Implementación de la ecuación de Morison aplicado a ondas de Tsunami en costas con vegetación con ayuda del modelo numérico Telemac
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Resumen
Los tsunamis recientes han demostrado su capacidad devastadora, causando numerosas
pérdidas humanas y daños materiales. Ejemplos notables incluyen el tsunami de 2004
en el Océano Índico, con 227,898 muertes, y el de Japón en 2011, que causó la muerte
de 15,859 personas. Además, el cambio climático y el aumento del nivel del mar incrementan
el riesgo de que estos eventos extremos sean más frecuentes y poderosos. Las
soluciones convencionales, como diques y muros de concreto, han generado problemas
adicionales, tales como la erosión costera, el deterioro de la calidad del agua y la pérdida
de biodiversidad. Además, en condiciones extremas, estas estructuras han demostrado ser
vulnerables, agravando el impacto en las zonas circundantes.
Ante estos desafíos, surge la necesidad de alternativas sostenibles y ecológicas. Esta
tesis investiga el uso de vegetación costera como una solución de defensa natural para
disipar la energía de las olas durante eventos extremos. Este enfoque ha sido efectivo en
varios países asiáticos en la mitigación de daños causados por tsunamis.
El modelo numérico Telemac-2D se utiliza para simular la interacción de las olas en
zonas de bahías, resolviendo las ecuaciones bidimensionales de Saint Venant y Boussinesq.
En este trabajo, se implementa y valida un módulo adicional que parametriza la
fuerza ejercida por la vegetación a través de las ecuaciones de Morison, lo cual permite
comprender con mayor precisión cómo la vegetación disipa la energía de las olas, reduce
la altura del agua y disminuye las velocidades de la ola al acercarse a la costa. La
validación del modelo se llevó a cabo mediante comparaciones con ensayos físicos en laboratorio
y datos de estudios previos. El modelo propuesto ha sido probado que es capaz
de simular el amortiguamiento debido a vegetación en playas impermeables.
Se llevaron a cabo numerosos experimentos numéricos para evaluar la efectividad de
diferentes niveles y distribuciones de vegetación. Los resultados muestran que es posible
optimizar la altura de vegetación para maximizar la atenuación de las olas, logrando una
protección similar a la de una distribución uniforme en altura de vegetación.
En conclusión, la vegetación costera se presenta como una estrategia de defensa viable
y ecológica, capaz de mitigar el impacto de tsunamis en la costa de manera efectiva y
sostenible.
Recent tsunamis have demonstrated their devastating power, causing numerous human casualties and material damage. Notable examples include the 2004 Indian Ocean tsunami, with 227,898 deaths, and the 2011 tsunami in Japan, which claimed 15,859 lives. Furthermore, climate change and rising sea levels increase the risk of these extreme events becoming more frequent and powerful. Conventional solutions, such as dikes and concrete walls, have generated additional problems, such as coastal erosion, deterioration of water quality, and loss of biodiversity. Additionally, under extreme conditions, these structures have proven vulnerable, worsening the impact on surrounding areas. In the face of these challenges, the need arises for sustainable and ecological alternatives. This thesis investigates the use of coastal vegetation as a natural defense solution to dissipate wave energy during extreme events. This approach has been effective in several Asian countries in mitigating damage caused by tsunamis. The numerical model Telemac-2D is used to simulate wave interaction in bay areas, solving the two-dimensional Saint Venant and Boussinesq equations. In this work, an additional module is implemented that parametrizes the force exerted by vegetation through the Morison equations, allowing for a better understanding of how vegetation dissipates wave energy, reduces water height, and slows wave velocities as they approach the coast. The model validation was carried out through comparisons with laboratory tests and data from previous studies. Numerous numerical experiments were conducted to evaluate the effectiveness of different vegetation levels and distributions. The results show that it is possible to optimize vegetation height to maximize wave attenuation, achieving protection similar to that of a uniform distribution in vegetation height. In conclusion, coastal vegetation emerges as a viable and ecological defense strategy capable of effectively and sustainably mitigating the impact of tsunamis on the coast.
Recent tsunamis have demonstrated their devastating power, causing numerous human casualties and material damage. Notable examples include the 2004 Indian Ocean tsunami, with 227,898 deaths, and the 2011 tsunami in Japan, which claimed 15,859 lives. Furthermore, climate change and rising sea levels increase the risk of these extreme events becoming more frequent and powerful. Conventional solutions, such as dikes and concrete walls, have generated additional problems, such as coastal erosion, deterioration of water quality, and loss of biodiversity. Additionally, under extreme conditions, these structures have proven vulnerable, worsening the impact on surrounding areas. In the face of these challenges, the need arises for sustainable and ecological alternatives. This thesis investigates the use of coastal vegetation as a natural defense solution to dissipate wave energy during extreme events. This approach has been effective in several Asian countries in mitigating damage caused by tsunamis. The numerical model Telemac-2D is used to simulate wave interaction in bay areas, solving the two-dimensional Saint Venant and Boussinesq equations. In this work, an additional module is implemented that parametrizes the force exerted by vegetation through the Morison equations, allowing for a better understanding of how vegetation dissipates wave energy, reduces water height, and slows wave velocities as they approach the coast. The model validation was carried out through comparisons with laboratory tests and data from previous studies. Numerous numerical experiments were conducted to evaluate the effectiveness of different vegetation levels and distributions. The results show that it is possible to optimize vegetation height to maximize wave attenuation, achieving protection similar to that of a uniform distribution in vegetation height. In conclusion, coastal vegetation emerges as a viable and ecological defense strategy capable of effectively and sustainably mitigating the impact of tsunamis on the coast.
Descripción
Palabras clave
Vegetación, Maremotos--Medidas de seguridad, Simulación por computadora
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto donde se indique lo contrario, la licencia de este ítem se describe como info:eu-repo/semantics/openAccess
