Modelo ProLab: Ruta Verde, plataforma gamificada para el reciclaje y la sostenibilidad en Amazonas, Perú
Fecha
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Resumen
La grave problemática de gestión de residuos sólidos en Amazonas, Perú, viene
impactando negativamente al medio ambiente y la salud pública durante décadas. Anualmente,
se generan aproximadamente 8.4 millones de toneladas de residuos, de los cuales una gran
parte no recibe tratamiento adecuado, resultando en la contaminación del aire, el agua y el
suelo, y afectando la flora, fauna y agricultura local. Además, afecta directamente a la salud
pública y a la economía regional.
Los pobladores de Amazonas están preocupados por el medio ambiente e interesados
en una gestión adecuada de los residuos sólidos. Entrevistas revelan que, aunque tienen
conocimiento sobre el reciclaje, no lo practican regularmente y expresan frustración por la falta
de acción de las autoridades locales. Para abordar esta problemática, se propone Ruta Verde,
un aplicativo de gamificación que utiliza inteligencia artificial y realidad aumentada para
fomentar el reciclaje en el departamento de Amazonas, estableciendo vínculos sólidos con
individuos y empresas a través de canales digitales.
El proyecto está alineado al Objetivo de Desarrollo Sostenible (ODS) 12.5 y 11.6 de
las Naciones Unidas: producción y consumo responsables y ciudades y comunidades
sostenibles, contribuyendo a la meta de reducir considerablemente la generación de desechos
hacia el 2030. Con una inversión de S/. 296,300 necesaria, de los cuales se plantea que
S/.100,000 será por el concepto de patrimonio y los S/.196,300 como deuda, el proyecto de
cinco años prevé lograr un valor actual neto (VAN) de S/ 2.294.581, con una tasa interna de
retorno (TIR) del 141%, demostrando una viabilidad financiera sólida y atractiva para los
inversionistas. Adicionalmente, se espera lograr un valor actual neto social (VAN Social) S/
1,517,705.00, indicador positivo en la comunidad y el medio ambiente
The severe issue of solid waste management in Amazonas, Peru, has negatively impacted the environment and public health for decades. Approximately 8.4 million tons of waste are generated annually, a significant portion of which is not properly treated, leading to air, water, and soil pollution, and harming local flora, fauna, and agriculture. Additionally, it directly affects public health and the regional economy. The residents of Amazonas are concerned about the environment and interested in proper solid waste management. Interviews reveal that while they are aware of recycling, they do not practice it regularly and express frustration over the lack of action from local authorities. To address this problem, we propose the gamified application Ruta Verde, which leverages artificial intelligence to promote education and motivation among the population for recycling practices in the Amazonas region. Using augmented reality technology, the app is designed for both individuals and businesses, focusing on establishing strong relationships with users through digital channels. The project is aligned with the United Nations Sustainable Development Goals (SDGs) 12.5 and 11.6: responsible production and consumption and sustainable cities and communities, contributing to the goal of significantly reducing waste generation by 2030. With a necessary investment of S/. 296,300, of which S/. 100,000 is proposed as equity and S/. 196,300 as debt, the five-year project expects to achieve a net present value (NPV) of S/. 2,294,581, with an internal rate of return (IRR) of 141%, demonstrating solid and attractive financial viability for investors. Additionally, a social net present value (Social NPV) of S/. 1,517,705.00 is expected to be achieved, a positive indicator for the community and the environment.
The severe issue of solid waste management in Amazonas, Peru, has negatively impacted the environment and public health for decades. Approximately 8.4 million tons of waste are generated annually, a significant portion of which is not properly treated, leading to air, water, and soil pollution, and harming local flora, fauna, and agriculture. Additionally, it directly affects public health and the regional economy. The residents of Amazonas are concerned about the environment and interested in proper solid waste management. Interviews reveal that while they are aware of recycling, they do not practice it regularly and express frustration over the lack of action from local authorities. To address this problem, we propose the gamified application Ruta Verde, which leverages artificial intelligence to promote education and motivation among the population for recycling practices in the Amazonas region. Using augmented reality technology, the app is designed for both individuals and businesses, focusing on establishing strong relationships with users through digital channels. The project is aligned with the United Nations Sustainable Development Goals (SDGs) 12.5 and 11.6: responsible production and consumption and sustainable cities and communities, contributing to the goal of significantly reducing waste generation by 2030. With a necessary investment of S/. 296,300, of which S/. 100,000 is proposed as equity and S/. 196,300 as debt, the five-year project expects to achieve a net present value (NPV) of S/. 2,294,581, with an internal rate of return (IRR) of 141%, demonstrating solid and attractive financial viability for investors. Additionally, a social net present value (Social NPV) of S/. 1,517,705.00 is expected to be achieved, a positive indicator for the community and the environment.
Descripción
Palabras clave
Residuos sólidos--Aspectos ambientales--Perú, Reciclaje (Residuos, etc.)--Perú, Desarrollo sostenible, Aplicaciones, Inteligencia artificial
Citación
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto donde se indique lo contrario, la licencia de este ítem se describe como info:eu-repo/semantics/openAccess
