Desarrollo de control predictivo de torque de motor de inducción aplicado a tracción vehicular
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Resumen
En los últimos años, los vehículos eléctricos han ganado relevancia en la
industria automotriz gracias a avances tecnológicos que han mejorado su diseño,
eficiencia y desempeño. Esto ha generado nuevas exigencias para los
controladores de motores eléctricos, como alta eficiencia energética, rápida
respuesta dinámica y máximo aprovechamiento de las prestaciones del motor.
Estas demandas han impulsado la investigación y desarrollo de nuevos
esquemas de control para optimizar el rendimiento del sistema y mejorar la
experiencia de conducción.
En el ámbito del control de tracción vehicular, los algoritmos más utilizados son
el Control Directo de Torque (DTC) y el Control de Campo Orientado (FOC), cada
uno con ventajas y desventajas. Sin embargo, los avances en
microprocesadores han incrementado el interés por el Control Predictivo Basado
en Modelos (MPC) aplicado a la electrónica de potencia, que ofrece beneficios
en comparación de los algoritmos clásicos utilizados
Este trabajo se enfoca en el Control Predictivo de Torque (PTC), una variante del
MPC, que se caracteriza por su buena respuesta dinámica y la facilidad para
implementar restricciones en el sistema. Adicionalmente, se analiza una mejora
del PTC considerando la optimización del ciclo de trabajo, lo que permite
disminuir ondulación de torque y distorsión de corriente. Además, se incorpora el
Control Activo por Rechazo de Perturbaciones (ADRC) para robustecer el control
de velocidad, mejorando la respuesta ante perturbaciones y variaciones en los
parámetros del sistema.
Como parte del estudio, se realiza el modelado longitudinal del vehículo eléctrico
Mitsubishi i-MiEV y modelado del motor de inducción, posteriormente se
desarrolla y compara las técnicas de control predictivo con FOC aplicado a la
tracción vehicular
Finalmente, se propone la implementación de un banco de pruebas experimental
para motores de inducción basado en FPGA, equipado con inversores, sensores
de corriente y velocidad, y un sistema de adquisición de datos para validar los
algoritmos desarrollados.
In recent years, electric vehicles have gained relevance in the automotive industry thanks to technological advances that have improved their design, efficiency and performance. This has generated new demands for electric motor controllers, such as high energy efficiency, fast dynamic response and maximum use of engine performance. These demands have driven the research and development of new control schemes to optimize system performance and improve the driving experience. In the field of vehicle traction control, the most widely used algorithms are Direct Torque Control (DTC) and Field Oriented Control (FOC), each with advantages and disadvantages. However, advances in microprocessors have increased interest in Model-Based Predictive Control (MPC) applied to power electronics, which offers benefits compared to the classical algorithms used This work focuses on Predictive Torque Control (PTC), a variant of MPC, which is characterized by its good dynamic response and the ease of implementing restrictions in the system. Additionally, an improvement of the PTC is analyzed considering the optimization of the work cycle, which allows to reduce torque ripple and current distortion. In addition, Active Disturbance Rejection Control (ADRC) is incorporated to strengthen speed control, improving the response to disturbances and variations in system parameters. As part of the study, longitudinal modeling of the Mitsubishi i-MiEV electric vehicle and modeling of the induction motor are carried out, subsequently predictive control techniques are developed and compared with FOC applied to vehicular traction. Finally, the implementation of an experimental test bench for induction motors based on FPGA is proposed, equipped with inverters, current and speed sensors, and a data acquisition system to validate the developed algorithms.
In recent years, electric vehicles have gained relevance in the automotive industry thanks to technological advances that have improved their design, efficiency and performance. This has generated new demands for electric motor controllers, such as high energy efficiency, fast dynamic response and maximum use of engine performance. These demands have driven the research and development of new control schemes to optimize system performance and improve the driving experience. In the field of vehicle traction control, the most widely used algorithms are Direct Torque Control (DTC) and Field Oriented Control (FOC), each with advantages and disadvantages. However, advances in microprocessors have increased interest in Model-Based Predictive Control (MPC) applied to power electronics, which offers benefits compared to the classical algorithms used This work focuses on Predictive Torque Control (PTC), a variant of MPC, which is characterized by its good dynamic response and the ease of implementing restrictions in the system. Additionally, an improvement of the PTC is analyzed considering the optimization of the work cycle, which allows to reduce torque ripple and current distortion. In addition, Active Disturbance Rejection Control (ADRC) is incorporated to strengthen speed control, improving the response to disturbances and variations in system parameters. As part of the study, longitudinal modeling of the Mitsubishi i-MiEV electric vehicle and modeling of the induction motor are carried out, subsequently predictive control techniques are developed and compared with FOC applied to vehicular traction. Finally, the implementation of an experimental test bench for induction motors based on FPGA is proposed, equipped with inverters, current and speed sensors, and a data acquisition system to validate the developed algorithms.
Descripción
Palabras clave
Motores eléctricos, Tracción eléctrica, Control robusto
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto donde se indique lo contrario, la licencia de este ítem se describe como info:eu-repo/semantics/openAccess