Facultad de Ciencias e Ingeniería
Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/7
Browse
3 results
Search Results
Item Determinación de parámetros de manufactura en el proceso de modelado por deposición fundida a partir de acrilonitrilo butadieno estireno (ABS) y acrilonitrilo butadieno estireno reforzado con fibras de carbono (ABS/CF)(Pontificia Universidad Católica del Perú, 2023-12-05) Torres Cerron, Jose Alejandro; Acosta Sullcahuamán, Julio ArnaldoEl presente proyecto pretende determinar los efectos de los principales parámetros de impresión sobre las propiedades mecánicas de los productos obtenidos mediante la técnica de modelado por deposición fundida a partir de ABS y ABS/CF. El objetivo del presente trabajo es determinar los parámetros de fabricación óptimos del proceso de modelado por deposición fundida usando acrilonitrilo butadieno estireno (ABS) y acrilonitrilo butadieno estireno reforzado con fibras de carbono (ABS/CF), así como determinar la influencia de cada parámetro sobre las propiedades mecánicas, con el fin de fabricar productos terminados. En la investigación se determinaron los parámetros de fabricación más importantes que influyen en el proceso FDM: altura de capa, patrón de impresión, temperatura de impresión y velocidad de movimiento del cabezal de impresión. Luego se usó la metodología de Taguchi (arreglo L9) para analizar la influencia de los parámetros de impresión sobre la resistencia a la tracción y el módulo elástico, para determinar la combinación que maximice dichas propiedades. Esta metodología permitió reducir considerablemente el número ensayos de tracción (según ISO 527) necesarios debido a que concentró su análisis sobre los efectos principales. Luego se realizó una comprobación experimental y teórica de las combinaciones óptimas halladas. Finalmente se evaluó el efecto del porcentaje de relleno sobre las propiedades de los productos impresos de ABS y ABS/CF. La combinación óptima para maximizar la resistencia a la tracción en probetas de ABS (35.5 MPa con un módulo de 2105 MPa) fue: altura de capa de 0.2 mm, patrón de líneas, temperatura de impresión de 260°C y velocidad de impresión de 40 mm/s. Mientras para el ABS/CF se usó 0.1mm de capa, patrón de líneas 280°C y 30mm/s, resultando una resistencia de 35.2 MPa y un módulo de 3460 MPa.Item Evaluación de las propiedades de amortiguamiento de materiales fabricados por impresión 3D y reforzados con nanotubos y fibras de carbono(Pontificia Universidad Católica del Perú, 2020-01-23) Tapia Cabrera, Jorge Eduardo; Rumiche Zapata, Francisco AurelioLa versatilidad que la tecnología de modelamiento por deposición fundida (FDM por sus siglas en inglés) presenta para la fabricación de componentes y piezas, no solo para fines decorativos sino para fines industriales, representa una nueva plataforma tecnológica para el desarrollo de nuevos materiales. En pos de tal avance, esta tesis busca describir empíricamente las relaciones entre los parámetros de fabricación por FDM y las propiedades de amortiguamiento de materiales nóveles para fines industriales en reducción de vibraciones, movimiento o sonido. En esta investigación se utilizarán dos materiales reforzados en una matriz de acrilonitrilo butadieno estireno (ABS), el primero con refuerzos de nanotubos de carbono y segundo reforzado con fibras de carbono, de ahora en adelante “ABS + CNT” y “ABS + CF” respectivamente. La redacción de este estudio comienza con una revisión de la literatura acerca la impresión 3D. Asimismo, se realiza una introducción a la teoría del amortiguamiento utilizada en este estudio. Se introducen los conceptos de stick slip, fuerzas de excitación, análisis de datos mediante transformadas de Fourier, método 3dB ancho de banda para el cálculo del ratio de amortiguamiento, y una recopilación de diversas investigaciones realizadas a materiales reforzados con nanotubos y fibras de carbono. Finalmente, se exponen las hipótesis centrales de este estudio. El procedimiento experimental seguido en esta tesis contempló la impresión de las probetas en dos tipos de orientación: cruzada 45°-/45° y unidireccional, en tres niveles de porcentaje de relleno, 100 %, 80 % y 60 %, para cada material. La selección de estos parámetros de impresión se realizó de acuerdo a las mejores propiedades mecánicas obtenidas en investigaciones anteriores [1]. Luego, en el Laboratorio de Acústica de la sección de Física, se implementó un banco de ensayos de caracterización de amortiguamiento de material mediante método impacto. Finalmente, las probetas se caracterizaron mediante ensayos de tracción en el CITE Materiales PUCP. De acuerdo a los ensayos realizado se concluye que los refuerzos de nanotubos de carbono en la matriz de ABS aumentan las capacidades de amortiguamiento del material. Sin embargo, las propiedades de amortiguamiento son inferiores a las de otros materiales utilizados en la industria de impresión 3D. Con respecto a los parámetros de impresión, se muestra la predominancia de la orientación cruzada por sobre la orientación unidireccional en propiedades de amortiguamiento y se sugiere una correlación entre la reducción de la densidad y el aumento de las propiedades de amortiguamiento en los materiales ensayados. Finalmente, se dan detalles acerca del proceso de fabricación de las probetas además de un análisis de las propiedades mecánicas en función de la densidad y de la orientación.Item Estudio de la resistencia a la tracción y a la flexión de materiales compuestos de matriz polimérica fabricados mediante impresión 3D(Pontificia Universidad Católica del Perú, 2018-12-14) Maz Vargas, Héndrick; Rumiche Zapata, Francisco AurelioLa tecnología de manufactura aditiva, AM (additive manufacturing) se está usando con gran éxito en las diversas aplicaciones del modelado por deposición fundida, FDM (fused deposition modeling). Esta es la tecnología más usada en la fabricación 3D principalmente en el área de ingeniería mecánica que la incorpora a sus procesos de producción de prototipos rápidos para pruebas funcionales de bajo costo, componentes complejos, piezas, accesorios, fabricados a partir de modelos digitales. Debido a la necesidad de mejorar las propiedades mecánicas de la materia prima usado para la fabricación de componentes, existe la exigencia de buscar nuevos materiales que puedan ser usados con la tecnología de impresión 3D. Uno de los posibles métodos es la adición de refuerzos de nanotubos de carbono y fibras de carbono a materiales poliméricos como el ABS (acrilonitrilo butadieno styrene). Así, formar materiales compuestos de matriz polimérica que podrían ser utilizados directamente en aplicaciones reales como en la industria aeronáutica y automotriz. El presente trabajo tiene como objetivo la fabricación y caracterización de materiales compuestos de matriz polimérica usando impresión 3D para luego evaluar y comparar sus propiedades mecánicas. Para la fabricación se utilizó la tecnología de impresión FDM y los siguientes materiales: ABS puro, compuestos de ABS más nanotubos de carbono y ABS más fibra de carbono. La metodología seguida para el desarrollo del trabajo primero fue el diseño de las muestras, para ello se utilizó la norma ASTM D638 para las probetas de tracción y ASTM D790 para las probetas de flexión; luego se determinó los parámetros de fabricación variando alturas de capas de deposición a 0,4 mm y 0,2 mm; y cinco diferentes tipos de mallado interno variando las orientaciones de deposición de capas a 90°, 0°, 45°, 0°/90° y 45°/-45°. Luego se procedió a la determinación de las propiedades mecánicas mediante ensayos de tracción y flexión. Finalmente, se realizó una caracterización estructural a la superficie de fractura mediante microscopía electrónica de barrido, SEM (scanning electron microscope). Como resultado final de los ensayos de tracción y flexión se tiene que en general los especímenes fabricados con ABS tienen mayor resistencia que los compuestos de ABS más nanotubos de carbono y ABS más fibra de carbono. Siendo los especímenes fabricados con 0,2 mm de altura de capa más resistentes que los de 0,4 mm. Además, los especímenes fabricados con 0,2 mm de altura de capa tienen resistencia igual a la del filamento base utilizado para la fabricación. Este caso se cumple solo en el ABS y ABS más nanotubos de carbono. En el compuesto ABS más fibra de carbono se refleja una notable disminución de la resistencia. Aunque los resultados del módulo de elasticidad tienen una elevada variabilidad, en todos los casos los materiales compuestos tienen una mayor rigidez respeto al ABS; sin embargo, la rigidez del compuesto ABS más fibra de carbono disminuye a la mitad respecto a su filamento base. Finalmente, los resultados del SEM indican que en el compuesto ABS más fibra de carbono, estas micro partículas no se adhieren de manera correcta a la matriz polimérica creando cavidades entre matriz y aditivo, debilitando la acción del refuerzo al momento de la transferencia de esfuerzos. Resultado que se reflejó durante de los ensayos mecánicos