Análisis de los diferentes significados de la igualdad en el contexto de la geometría euclidiana en el nivel secundaria
Files
Date
2016-04-20
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Abstract
El presente trabajo emplea algunas herramientas teóricas y metodológicas del Enfoque
Ontosemiotico de la Cognición e Instrucción Matemática (EOS), para identificar los
diferentes significados de la igualdad, que surgen de su uso en la solución de problemas en el
contexto de la Geometría.
Para ello se han analizado algunos textos clásicos, que son un referente importante en
Geometría y otros textos que se usan en la enseñanza de esta materia. El diseño de las
configuraciones epistémicas permite comprender la ontología establecida entre las
definiciones y propiedades, mientras se resuelven problemas con procedimientos y
argumentos que los justifican, haciendo uso de la terminología que le es inherente en la
institución matemática, de donde emerge cada significado del objeto matemático.
Se han identificado tres significados que se asignan a la igualdad en Geometría, estos son:
identidad Geométrica, Congruencia e Igualdad de áreas y volúmenes
A continuación se ha analizado el libro oficial de matemática del tercer año de secundaria con
el objetivo de identificar los significados que se han definido, sin embargo, en este libro solo
se verificó el uso del significado congruencia.
This paper uses some theoretical and methodological tools from the Onto-semiotic Approach to Mathematical Cognition and Instruction (EOS), to identify the different meanings of equality that emerge from its use in solving problems in the context of Geometry. This has been analyzed in some classical texts, which are an important benchmark in Geometry, and other texts used in the teaching of this subject. The design of the epistemic configurations allow us to understand the ontology established between the definitions and properties, while problems are solved with geometrical procedures and arguments that justify them, by using terminology that is inherent within the mathematical institution, from where each meaning of mathematical object emerges. We have identified three meanings assigned to equality in geometry, these are: Geometric identity, congruence and Equality of areas and volumes. Later we analyzed the official mathematics book of third year of secondary school with the purpose of identifying the meanings defined, however, in this book, only the meaning congruence is verified.
This paper uses some theoretical and methodological tools from the Onto-semiotic Approach to Mathematical Cognition and Instruction (EOS), to identify the different meanings of equality that emerge from its use in solving problems in the context of Geometry. This has been analyzed in some classical texts, which are an important benchmark in Geometry, and other texts used in the teaching of this subject. The design of the epistemic configurations allow us to understand the ontology established between the definitions and properties, while problems are solved with geometrical procedures and arguments that justify them, by using terminology that is inherent within the mathematical institution, from where each meaning of mathematical object emerges. We have identified three meanings assigned to equality in geometry, these are: Geometric identity, congruence and Equality of areas and volumes. Later we analyzed the official mathematics book of third year of secondary school with the purpose of identifying the meanings defined, however, in this book, only the meaning congruence is verified.
Description
Keywords
Matemáticas--Estudio y enseñanza (Secundaria)., Geometría--Estudio y enseñanza., Educación secundaria--Investigaciones.
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess