Modelo espacial para estudiar la distribución del monto del gasto devengado de la inversión pública a nivel provincial en el Perú
Date
2025-03-03
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Abstract
Esta tesis presenta una exploración detallada y técnica de los modelos espaciales autorregresivos
condicionales (CAR) y autorregresivos simultáneos (SAR) para analizar los datos
de inversión pública del año 2022, específicamente para estudiar la distribución espacial del
monto del gasto devengado de inversión pública en Perú. A través de una combinación de
análisis teóricos y simulaciones, la investigación establece metodologías para evaluar cómo
variables como la corrupción, los niveles de inversión del gobierno local, cartera priorizada
y avance físico de la inversión, influencian el gasto devengado en diferentes provincias. Este
estudio contribuye significativamente al entendimiento de la distribución espacial del gasto
público y los factores que lo afectan, utilizando técnicas estadísticas avanzadas para mejorar
la precisión y eficacia de las estimaciones de los modelos utilizados. Los resultados del análisis
ofrecen perspectivas críticas sobre la gestión y asignación de fondos públicos, proporcionando
una herramienta valiosa para los planificadores y responsables de la formulación de políticas
públicas.
This thesis presents a detailed and technical exploration of the Conditional Autoregressive (CAR) and Simultaneous Autoregressive (SAR) spatial models to analyze the data on public investment from the year 2022, specifically to study the spatial distribution of accrued expenditure in public investment in Peru. Through a combination of theoretical analysis and simulations, the research establishes methodologies to evaluate how variables such as corruption, levels of local government investment, prioritized portfolio, and physical progress of the investment influence the accrued expenditure in different provinces. This study significantly contributes to the understanding of the spatial distribution of public spending and the factors that affect it, using advanced statistical techniques to improve the accuracy and effectiveness of the estimates of the models used. The results of the analysis provide critical perspectives on the management and allocation of public funds, offering a valuable tool for planners and policymakers in public policy formulation.
This thesis presents a detailed and technical exploration of the Conditional Autoregressive (CAR) and Simultaneous Autoregressive (SAR) spatial models to analyze the data on public investment from the year 2022, specifically to study the spatial distribution of accrued expenditure in public investment in Peru. Through a combination of theoretical analysis and simulations, the research establishes methodologies to evaluate how variables such as corruption, levels of local government investment, prioritized portfolio, and physical progress of the investment influence the accrued expenditure in different provinces. This study significantly contributes to the understanding of the spatial distribution of public spending and the factors that affect it, using advanced statistical techniques to improve the accuracy and effectiveness of the estimates of the models used. The results of the analysis provide critical perspectives on the management and allocation of public funds, offering a valuable tool for planners and policymakers in public policy formulation.
Description
Keywords
Estadística, Inversiones públicas--Perú, Estadística--Análisis de datos
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess