Endogenous Threshold Stochastic Volatility Model: An Outlook Across the Globe for Stock Market Indices
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Resumen
Asymmetries and heavy tails are well-known characteristics on compound daily returns stock market in
dices. The THSV-SMN–Threshold Stochastic Volatility Modelwith Scale Mixture of Normal Distributions–
model has become an important tool for analysis regarding forecasting asset returns and Value at Risk and Expected Shortfall portfolio estimations in order to assess marketrisk.Therefore, under a Bayesian approach,we
develop an extensionon the model proposed by Abanto & Garrafa(2019).This extension allows for an endogenous threshold and will be studied under two theoretical frameworks: the use of order statistics and a random
walk Metropolis–Hasting algorithm(RWMH). We test themodel extension upon stock market indices across the
globe along four regions (NorthAmerica, LATAM,EuropeandAsia) withour proposed RWMH algorithm and
compare the results with the original (fixedthreshold) model using goodness-of-fit and error prediction criteria.
Evidence shows that stock markets indices differ both within and across regions,yet in most cases the extended
model outperforms the original THSV-SMN.Thus,prudence and a personalized analysis per index are strongly
recommended.
Descripción
Palabras clave
Riesgo (Economía)--Perú, Modelos estocásticos, Pronóstico de la economía--Perú
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto donde se indique lo contrario, la licencia de este ítem se describe como info:eu-repo/semantics/openAccess
