Procesos de generación de conjeturas con cuadriláteros en un entorno de geometría dinámica con profesores de educación básica regular
Date
2024-06-20
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Abstract
Esta investigación se centra en el estudio del proceso de generación de conjeturas
relacionadas con cuadriláteros en un entorno de geometría dinámica. Se aplican dos actividades
que se resuelven utilizando el software GeoGebra, esto permite analizar cómo cuatro profesores
de matemáticas generan conjeturas al resolver actividades de problemas abiertos de geometría
en dicho entorno, donde se movilizan nociones de cuadriláteros. La relevancia de esta
investigación radica en que los profesores de matemáticas de educación secundaria deben
comprender cómo se desarrolla la formulación y argumentación de conjeturas geométricas,
especialmente cuando se utilizan herramientas digitales. Se considera como referencial teórico
el modelo de mantenimiento de arrastre-conjetura propuesto por Baccaglini-Frank (2010, 2019)
el cual permite describir y analizar procesos de conjeturación en ambientes de geometría
dinámica.
La metodología de investigación es cualitativa, ya que nuestro interés radica en observar,
describir y analizar las conjeturas formuladas, el método seguido es el estudio de caso. En cuanto
a los resultados, el análisis de las actividades permitió validar la relación entre la generación de
conjeturas y usos particulares de la herramienta arrastre, sobre todo cuando la última invariante
está relacionada a una trayectoria. En particular, el arrastre de mantenimiento por lo general
aparece dos veces en este tipo de actividades, la primera cuando los resolutores identifican la
invariante inducida intencionalmente y la segunda al momento de establecer el enlace
condicional entre la invariante observada intencionalmente y la invariante inducida
intencionalmente.
Se concluye que el modelo de mantenimiento de arrastre-conjetura permite describir y
comprender el proceso de generación de una conjetura en un ambiente de geometría dinámica.
This research focuses on the study of the process of generating conjectures related to quadrilaterals in a dynamic geometry environment. Two activities that are solved using GeoGebra software are applied to analyse how four mathematics teachers generate conjectures when solving open geometry problem activities in this environment, where notions of quadrilaterals are mobilised. The relevance of this research lies in the fact that secondary school mathematics teachers need to understand how the formulation and argumentation of geometric conjectures is developed, especially when digital tools are used. We consider as a theoretical referential the Maintaining dragging-conjecturing model proposed by Baccaglini-Frank (2010, 2019), which allows us to describe and analyse conjecturing processes in dynamic geometry environments. The research methodology is qualitative, as our interest lies in observing, describing and analysing the conjectures formulated, and the method used is the case study. As for the results, the analysis of the activities made it possible to validate the relationship between the generation of conjectures and particular uses of the dragging tool, especially when the latter invariant is related to a trajectory. In particular, the maintenance entrainment usually appears twice in this type of activities, the first time when the solvers identify the intentionally induced invariant and the second time when establishing the conditional link between the intentionally observed invariant and the intentionally induced invariant. It is concluded that the drag-conjecture maintenance model allows to describe and understand the process of conjecture generation in a dynamic geometry environment.
This research focuses on the study of the process of generating conjectures related to quadrilaterals in a dynamic geometry environment. Two activities that are solved using GeoGebra software are applied to analyse how four mathematics teachers generate conjectures when solving open geometry problem activities in this environment, where notions of quadrilaterals are mobilised. The relevance of this research lies in the fact that secondary school mathematics teachers need to understand how the formulation and argumentation of geometric conjectures is developed, especially when digital tools are used. We consider as a theoretical referential the Maintaining dragging-conjecturing model proposed by Baccaglini-Frank (2010, 2019), which allows us to describe and analyse conjecturing processes in dynamic geometry environments. The research methodology is qualitative, as our interest lies in observing, describing and analysing the conjectures formulated, and the method used is the case study. As for the results, the analysis of the activities made it possible to validate the relationship between the generation of conjectures and particular uses of the dragging tool, especially when the latter invariant is related to a trajectory. In particular, the maintenance entrainment usually appears twice in this type of activities, the first time when the solvers identify the intentionally induced invariant and the second time when establishing the conditional link between the intentionally observed invariant and the intentionally induced invariant. It is concluded that the drag-conjecture maintenance model allows to describe and understand the process of conjecture generation in a dynamic geometry environment.
Description
Keywords
Matemáticas--Estudio y enseñanza (Secundaria), Geometría--Estudio y enseñanza, Tecnología educativa
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess