Determinación y segmentación del nivel socio-económico a partir del análisis automático de imágenes de satélite

dc.contributor.advisorBeltrán Castañón, César Armando
dc.contributor.authorSosa Pezo, Carlos Alberto
dc.date.accessioned2022-07-11T17:41:14Z
dc.date.available2022-07-11T17:41:14Z
dc.date.created2022
dc.date.issued2022-07-11
dc.description.abstractEste proyecto tiene como objetivo desarrollar un modelo de análisis de imágenes satelitales basado en redes neuronales profundas para poder identificar de forma automática el nivel socioeconómico de zonas urbanas, a través de la utilización de las imágenes obtenidas mediante el satélite estatal peruano PerúSat-1, las cuales fueron provistas al proyecto por la Comisión Nacional de Investigación y Desarrollo Aeroespacial (CONIDA). De esta manera, se buscó proveer una fuente alternativa y complementaria a los métodos manuales de recolección de datos demográficos para los casos en los que esta metodología tradicional no resulta conveniente de ejecutar por factores de tiempo y presupuesto. Para ello, el proyecto inicia con la conformación del corpus de datos utilizados para el entrenamiento del modelo de análisis de imágenes satelitales. Este conjunto de datos incorpora, además de imágenes satelitales de PerúSat-1 de la ciudad de Lima capturadas entre 2016 y 2020, una serie de etiquetas que indican el nivel de ingresos de cada manzana en dicha ciudad. Estas etiquetas son el resultado de un estudio elaborado por el Instituto Nacional de Estadística e Informática en el año 2019, tomando como base los datos obtenidos durante el Censo Nacional de Población y Vivienda de 2017. En el caso de las imágenes satelitales, este proceso consiste en la composición en imágenes de cuatro bandas (rojo, azul, verde e infrarrojo) de alta resolución y su posterior división en bloques cuadrados de 512 píxeles en cada dimensión; mientras que las etiquetas censales son organizadas en una base de datos relacional, de forma que puedan ser accedidas por el script para la integración de ambas fuentes de datos. Finalmente, se asigna a cada bloque de 512 x 512 píxeles una máscara con las etiquetas censales correspondientes a la zona capturada. Luego, se define un protocolo de preprocesamiento de los datos, en el que normalizan los parches de las imágenes satelitales, además de incrementar el tamaño del conjunto de datos, de modo que sean adecuados para el entrenamiento de los modelos desarrollados. Respecto a estos, se dispone de dos modelos de redes neuronales convolucionales para el análisis socioeconómico de las imágenes satelitales: el primero, encargado de segmentar semánticamente los techos observados en las imágenes; y el segundo que, recibiendo como entradas la imágen satelital original y la máscara de techos generada por el modelo anterior, detecta el nivel socioeconómico de cada manzana en dicha imagen. Así, se obtiene como resultado final una máscara de bits en la que se indica el nivel socioeconómico de cada manzana observada en la imagen satelital. Finalmente, para facilitar su acceso hacia el usuario final, se desarrolla una plataforma web, compuesta por una interfaz gráfica y una interfaz de programación de aplicaciones, que permite seleccionar, con la ayuda de un mapa en la interfaz gráfica, imágenes satelitales para que sean procesadas por los modelos de redes neuronales y puedan ser las máscaras generadas visualizadas en conjunto con la imagen original.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/22766
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPEes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/pe/*
dc.subjectSegmentación del mercado--Automatizaciónes_ES
dc.subjectSatélites artificiales--Aplicacioneses_ES
dc.subjectSatélites artificiales--Imágeneses_ES
dc.subjectProcesamiento de imágenes digitaleses_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.02.00es_ES
dc.titleDeterminación y segmentación del nivel socio-económico a partir del análisis automático de imágenes de satélitees_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
renati.advisor.dni29561260
renati.advisor.orcidhttps://orcid.org/0000-0002-0173-4140es_ES
renati.author.dni70435392
renati.discipline612286es_ES
renati.jurorMelgar Sasieta, Héctor Andréses_ES
renati.jurorBeltran Castañon, Cesar Armandoes_ES
renati.jurorOlivares Poggi, Cesar Augustoes_ES
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_ES
renati.typehttps://purl.org/pe-repo/renati/type#tesises_ES
thesis.degree.disciplineIngeniería Informáticaes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Facultad de Ciencias e Ingenieríaes_ES
thesis.degree.levelTítulo Profesionales_ES
thesis.degree.nameIngeniero Informáticoes_ES

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
SOSA_PEZO_CARLOS_ALBERTO_DETERMINACION_SEGMENTACION_NIVEL.pdf
Size:
2.91 MB
Format:
Adobe Portable Document Format
Description:
Texto completo

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: