Bases de Groebner y aplicaciones a la conjetura del Jacobiano
Fecha
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Resumen
En esta tesis expositiva, exploraremos las Bases de Groebner y su aplicación a un sistema
de ecuaciones polinómicas, particularmente en lo referente a la Conjetura Jacobiana.
Esto se hará introduciendo algunos conceptos relacionados con el álgebra conmutativa
y algunos conceptos relacionados con la geometría algebraica computacional.
Esta disertación está organizada de la siguiente manera. En el Capítulo 1, introduciremos
los conceptos básicos relacionados con el álgebra conmutativa y la geometría
algebraica básica. En el Capítulo 2, definiremos las bases de Groebner, y algunas
propiedades relacionadas con ellas, discutiremos en detalle algunas propiedades relacionadas
con ellas y discutiremos el algoritmo que está relacionado con ellas. En el
Capítulo 3, discutiremos el Algoritmo de Buchberger y algunos refinamientos relacionados
con el algoritmo. En el Capítulo 4, discutiremos la aplicación de los conceptos
aprendidos a un sistema de ecuaciones polinómicas relacionadas con la Conjetura Jacobiana.
Esta parte de la tesina tiene como base el trabajo de Valqui y Solorzano (2014)
[VS14] que calculó el sistema de ecuaciones polinómicas y la base de Groebner del sistema
para n = 2. Para ello se utilizó una fórmula recursiva para los números catalanes.
En esta tesis, calcularemos el sistema de ecuaciones polinómicas, sus respectivas bases
de Groebner y el conjunto de soluciones para n = 3. En el Capítulo 5, creamos una
interfaz en Mathematica 13 que calcula el sistema de ecuaciones polinómicas, la base de
Groebner, y clasifica los conjuntos de soluciones.
In this expository thesis, we will explore the Groebner Bases and their application to a system of polynomial equations, particularly concerning the Jacobian Conjecture. This will be done by introducing some concepts related to commutative algebra and some concepts related to computational algebraic geometry. This dissertation is organized as follows. In Chapter 1, we will introduce the basic concepts related to commutative algebra and basic algebraic geometry. In Chapter 2, we will define the Groebner basis, and some properties related to them, we will discuss in detail some properties related to them and discuss the algorithm that is related to it. In Chapter 3, we will discuss the Buchberger Algorithm and some refinements related to the algorithm. In Chapter 4, we will discuss applying the concepts learned to a system of polynomial equations related to the Jacobian Conjecture. This part of the dissertation has as its base the paper of Valqui and Solorzano (2014) [VS14] which computed the system of polynomial equations and Groebner basis of the system for n = 2. This was done by using a recursive formula for the Catalan numbers. In this dissertation, we will compute the system of polynomial equations, their respective Groebner basis, and the set of solutions for n = 3. In Chapter 5, we create an interface in Mathematica 13 that calculates the system of polynomial equations, the Groebner basis, and classifies the solution sets.
In this expository thesis, we will explore the Groebner Bases and their application to a system of polynomial equations, particularly concerning the Jacobian Conjecture. This will be done by introducing some concepts related to commutative algebra and some concepts related to computational algebraic geometry. This dissertation is organized as follows. In Chapter 1, we will introduce the basic concepts related to commutative algebra and basic algebraic geometry. In Chapter 2, we will define the Groebner basis, and some properties related to them, we will discuss in detail some properties related to them and discuss the algorithm that is related to it. In Chapter 3, we will discuss the Buchberger Algorithm and some refinements related to the algorithm. In Chapter 4, we will discuss applying the concepts learned to a system of polynomial equations related to the Jacobian Conjecture. This part of the dissertation has as its base the paper of Valqui and Solorzano (2014) [VS14] which computed the system of polynomial equations and Groebner basis of the system for n = 2. This was done by using a recursive formula for the Catalan numbers. In this dissertation, we will compute the system of polynomial equations, their respective Groebner basis, and the set of solutions for n = 3. In Chapter 5, we create an interface in Mathematica 13 that calculates the system of polynomial equations, the Groebner basis, and classifies the solution sets.
Descripción
Palabras clave
Álgebra, Polinomios, Anillos conmutativos
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto donde se indique lo contrario, la licencia de este ítem se describe como info:eu-repo/semantics/openAccess
