Análisis de las praxeologías mixtas que se presentan en las tareas matemáticas con Scratch asociado a la secuencia figural
Fecha
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Resumen
La presente investigación analiza las praxeologías mixtas presentes en las tareas
matemáticas realizadas con Scratch, enfocadas en la secuencia figural. Para ello, se
utilizaron materiales y recursos extraídos de investigaciones previas que presentaban
ejercicios implementados con Scratch, centrados en nuestro objeto matemático. La
problemática que originó a este estudio se basa en determinar qué dominios de
conocimiento están presentes en las nuevas praxeologías del pensamiento
computacional cuando se relaciona con las matemáticas, en particular, la generalización
de patrones, principalmente debido al predominio de estrategias aritméticas y recursivas,
con enfoques visuales o explícitos. Para responder a esta problemática se adoptó la
Teoría Antropológica de lo Didáctico y el modelo praxeológico T4TEL como marco teórico
y metodológico. A través de este modelo teórico se analizó la organización matemática
de la secuencia figural, que resultó clave para comprender y describir la organización
matemática mixta. Esta praxeología de referencia facilitó el análisis praxeológico
asociado a la secuencia figural implementada en el entorno de Scratch. Posteriormente,
con los elementos teóricos proporcionados por el marco, se analizaron diversos
ejercicios con Scratch relacionados con el objeto matemático en estudio. Se lograron
identificar 10 tipos de tareas, que clasificamos en 8 subtipos dentro del tipo de tarea
𝑻𝒑𝒓𝒐𝒈[𝑻𝑺𝑭] “Desarrollar un programa en Scratch que ejecute 𝑻𝑺𝑭”, siendo 𝑻𝑺𝑭 un tipo de
tarea de la secuencia figural. Para esto, se basó en las variables previamente
identificadas. Asimismo, se reconocieron ingredientes técnicos clave en esta praxeología
mixta, por ejemplo, el más usado es 𝑇∗
𝑚[𝑢𝑛𝑖𝑑. 𝑑𝑒 𝑝𝑎𝑡𝑟ó𝑛]: identificar la unidad de patrón
en el programa de Scratch.
This This research analyzes the mixed praxeologies present in mathematical tasks performed with Scratch, focusing on figural sequences. For this, materials and resources extracted from previous research presenting exercises implemented with Scratch, centered on the mathematical object, were used. The problem that originated this study is based on determining which knowledge domains are present in the new praxeologies of computational thinking when related to mathematics, in particular, the generalization of patterns, mainly due to the predominance of arithmetic and recursive strategies, with visual or explicit approaches. Additionally, the Anthropological Theory of the Didactic and the praxeological model T4TEL were adopted as the theoretical and methodological framework. Through this theoretical model, the mathematical organization of the figural sequence was analyzed, which proved key in understanding and describing the mixed mathematical organization. This reference praxeology facilitated the analysis of the didactic sequence associated with the figural sequence implemented in the Scratch environment. Subsequently, with the theoretical elements provided by the framework, various articles presenting Scratch exercises related to the mathematical object under study were analyzed. Ten types of tasks were identified, which we classified into eight subtypes within the task type 𝑻𝒑𝒓𝒐𝒈[𝑻𝑺𝑭] "Develop a program in Scratch that executes T_SF," with 𝑻𝑺𝑭 being a type of task for the figural sequence. For this, the previously identified variables were used. Furthermore, seven key technical ingredients in this mixed praxeology were recognized, for example, the most used is 𝑇∗ 𝑚[pattern unit]: identify the pattern unit in the Scratch program.
This This research analyzes the mixed praxeologies present in mathematical tasks performed with Scratch, focusing on figural sequences. For this, materials and resources extracted from previous research presenting exercises implemented with Scratch, centered on the mathematical object, were used. The problem that originated this study is based on determining which knowledge domains are present in the new praxeologies of computational thinking when related to mathematics, in particular, the generalization of patterns, mainly due to the predominance of arithmetic and recursive strategies, with visual or explicit approaches. Additionally, the Anthropological Theory of the Didactic and the praxeological model T4TEL were adopted as the theoretical and methodological framework. Through this theoretical model, the mathematical organization of the figural sequence was analyzed, which proved key in understanding and describing the mixed mathematical organization. This reference praxeology facilitated the analysis of the didactic sequence associated with the figural sequence implemented in the Scratch environment. Subsequently, with the theoretical elements provided by the framework, various articles presenting Scratch exercises related to the mathematical object under study were analyzed. Ten types of tasks were identified, which we classified into eight subtypes within the task type 𝑻𝒑𝒓𝒐𝒈[𝑻𝑺𝑭] "Develop a program in Scratch that executes T_SF," with 𝑻𝑺𝑭 being a type of task for the figural sequence. For this, the previously identified variables were used. Furthermore, seven key technical ingredients in this mixed praxeology were recognized, for example, the most used is 𝑇∗ 𝑚[pattern unit]: identify the pattern unit in the Scratch program.
Descripción
Palabras clave
Lenguajes de programación visuales, Matemáticas--Enseñanza asistida por computadora, Matemáticas--Estudio y enseñanza (Primaria), Antropología educativa
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto donde se indique lo contrario, la licencia de este ítem se describe como info:eu-repo/semantics/openAccess
