Diseño de una unidad de gestión de energía para dispositivos médicos implantables con alimentación basada en transferencia inalámbrica de potencia por ultrasonido
Date
2025-04-03
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Abstract
Esta tesis presenta el diseño de un circuito integrado de Unidad de Gestión de Energía
(PMU), destinada a dispositivos médicos implantables (IMDs) alimentados mediante
transferencia inalámbrica de potencia por ultrasonido. El diseño considera las restricciones
propias de los IMDs, como la baja disponibilidad de energía y la necesidad
de alta eficiencia para evitar daños térmicos en el tejido circundante. El circuito fue
diseñado en una tecnología estándar CMOS de 0.18 μm de TSMC, y las simulaciones se
realizaron utilizando el software Cadence. El diseño del PMU se basa en un rectificador
activo CMOS compuesto por un núcleo, dos comparadores, dos buffers, una referencia
de corriente compensada en temperatura y un limitador de voltaje. El núcleo del rectificador
fue diseñado utilizando dos transistores PMOS en configuración cross-coupled y dos
transistores NMOS como interruptores activos para la conversión de voltaje AC a DC.
Los comparadores fueron diseñados con una topología de puerta común para generar el
voltaje de control necesario para la activación de los interruptores activos. Estos comparadores,
optimizados para funcionar con una corriente de polarización de 1 μA, logran
una ganancia de 48.37 dB, una frecuencia de ganancia unitaria de 221.8 MHz y un PSRR
de 48.22 dB. Los buffers fueron diseñados con cadenas de cuatro inversores CMOS en
configuración exponential horn, para restaurar el voltaje de salida del comparador con el
mínimo tiempo de propagación. La referencia de corriente compensada en temperatura,
diseñada con una topología basada en self-cascode composite transistors (SCCT), genera
una corriente de 1 μA con un coeficiente de temperatura de 71.54 ppm/◦C y regulación de
línea de 9.14 nA/V, para suministrar la corriente de polarización necesaria a los comparadores.
El limitador de voltaje fue implementado mediante transistores en configuración
diodo conectados en antiparalelo para proteger el circuito de posibles sobrevoltajes superiores
a 1.8 V. Con un consumo de potencia total de 21.7 μW, el circuito PMU logra una
eficiencia de conversión de potencia (PCE) de 95.48% y una relación de conversión de
voltaje (VCR) de 87.29%. Alimentado por un modelo de transductor piezoeléctrico con
potencia máxima disponible de 524.7 μW, frecuencia de 1.5 MHz e impedancia de Zpiezo
= 2.14 kΩ + j398.7 Ω, el PMU es capaz de entregar una potencia de salida DC de 459.6
μW y un voltaje de salida DC de 1.17 V a la carga. El circuito PMU ha demostrado un
desempeño robusto en condiciones de variaciones extremas de proceso, voltaje y temperatura,
e incorporando una red de acoplamiento de impedancias externa, logra un PCE
superior al 83.66% y un VCR superior al 93.39% en el peor de los casos.
This thesis presents the design of a Power Management Unit (PMU) integrated circuit, intended for implantable medical devices (IMDs) powered by ultrasonic wireless power transfer. The design takes into account the specific constraints of IMDs, such as limited available power and the need for high efficiency to avoid thermal damage to surrounding tissue. The circuit was designed in a standard 0.18 μm CMOS technology from TSMC, and simulations were performed using Cadence software. The PMU design is based on an active rectifier composed of a core, two comparators, two buffers, a temperature-compensated current reference, and a voltage limiter. The core rectifier was designed using two PMOS transistors in a cross-coupled configuration and two NMOS transistors as active switches for AC to DC voltage conversion. The comparators were designed with a common-gate topology to generate the control voltage required for activating the active switches. These comparators, optimized to operate with a 1 μA bias current, achieve a gain of 48.37 dB, a unity-gain frequency of 221.8 MHz, and a PSRR of 48.22 dB. The buffers were designed with chains of four CMOS inverters in an exponential horn configuration to restore the comparator output voltage with minimal propagation delay. The temperature-compensated current reference, designed using a topology based on self-cascode composite transistors (SCCT), generates a 1 μA current with a temperature coefficient of 71.54 ppm/◦C and a line regulation of 9.14 nA/V, to supply the necessary bias current to the comparators. The voltage limiter was implemented using diode-connected transistors in antiparallel to protect the circuit from potential overvoltages exceeding 1.8 V. With a total power consumption of 21.7 μW, the PMU circuit achieves a power conversion efficiency (PCE) of 95.48% and a voltage conversion ratio (VCR) of 87.29%. Powered by a piezoelectric transducer model with a maximum available power of 524.7 μW, a frequency of 1.5 MHz, and an impedance of Zpiezo = 2.14 kΩ + j398.7 Ω, the PMU is capable of delivering a DC output power of 459.6 μW and a DC output voltage of 1.17 V to the load. The PMU circuit has demonstrated robust performance under extreme variations of process, voltage, and temperature conditions, and incorporating an external impedance matching network, it achieves a PCE of over 83.66% and a VCR exceeding 93.39% in the worst-case scenario.
This thesis presents the design of a Power Management Unit (PMU) integrated circuit, intended for implantable medical devices (IMDs) powered by ultrasonic wireless power transfer. The design takes into account the specific constraints of IMDs, such as limited available power and the need for high efficiency to avoid thermal damage to surrounding tissue. The circuit was designed in a standard 0.18 μm CMOS technology from TSMC, and simulations were performed using Cadence software. The PMU design is based on an active rectifier composed of a core, two comparators, two buffers, a temperature-compensated current reference, and a voltage limiter. The core rectifier was designed using two PMOS transistors in a cross-coupled configuration and two NMOS transistors as active switches for AC to DC voltage conversion. The comparators were designed with a common-gate topology to generate the control voltage required for activating the active switches. These comparators, optimized to operate with a 1 μA bias current, achieve a gain of 48.37 dB, a unity-gain frequency of 221.8 MHz, and a PSRR of 48.22 dB. The buffers were designed with chains of four CMOS inverters in an exponential horn configuration to restore the comparator output voltage with minimal propagation delay. The temperature-compensated current reference, designed using a topology based on self-cascode composite transistors (SCCT), generates a 1 μA current with a temperature coefficient of 71.54 ppm/◦C and a line regulation of 9.14 nA/V, to supply the necessary bias current to the comparators. The voltage limiter was implemented using diode-connected transistors in antiparallel to protect the circuit from potential overvoltages exceeding 1.8 V. With a total power consumption of 21.7 μW, the PMU circuit achieves a power conversion efficiency (PCE) of 95.48% and a voltage conversion ratio (VCR) of 87.29%. Powered by a piezoelectric transducer model with a maximum available power of 524.7 μW, a frequency of 1.5 MHz, and an impedance of Zpiezo = 2.14 kΩ + j398.7 Ω, the PMU is capable of delivering a DC output power of 459.6 μW and a DC output voltage of 1.17 V to the load. The PMU circuit has demonstrated robust performance under extreme variations of process, voltage, and temperature conditions, and incorporating an external impedance matching network, it achieves a PCE of over 83.66% and a VCR exceeding 93.39% in the worst-case scenario.
Description
Keywords
CMOS (Electrónica)--Diseño y construcción, Implantes artificiales, Recolección de energía, Convertidores analógico-digitales, Ingeniería biomédica
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess