Clasificación del territorio peruano de acuerdo con su potencial de agua subterránea utilizando algoritmos de aprendizaje automatizado

dc.contributor.advisorLarrea Gallegos, Gustavo Martín
dc.contributor.authorPortocarrero Rodríguez, César Augusto
dc.date.accessioned2020-12-16T21:11:16Z
dc.date.available2020-12-16T21:11:16Z
dc.date.created2020
dc.date.issued2020-12-16
dc.description.abstractEl agravamiento del estrés hídrico tanto en el sector urbano como en el rural motiva cada vez más a los tomadores de decisión a impulsar la explotación sostenible de este recurso. Para ello, se requiere conocer con certeza los emplazamientos con un mayor potencial de explotación. Para hacer frente a este problema sin recurrir a perforaciones directas, la presente investigación tiene como objetivo principal explorar el potencial hidrológico subterráneo del Perú correspondiente a acuíferos de baja profundidad mediante la aplicación de modelos de clasificación de bosques aleatorios y redes neuronales, dos algoritmos de aprendizaje automatizado. Esta rama de la inteligencia artificial permite generar modelos multidimensionales y con variables complejas sin efectuar presuposiciones estadísticas. Para explicar el potencial de agua subterránea, se recurren a variables topográficas, hidrológicas, geológicas, pedológicas y ambientales que influyen en diferente medida en la conductividad hidráulica subterránea y en la tasa de recarga de los acuíferos. Los resultados obtenidos indican que el mejor desempeño equiparable al estado del arte se obtiene para el modelo de bosques aleatorios (exactitud=0.77, puntaje F1=0.73, AUC=0.88) y que la construcción de modelos especializados en una región dada permite mejorar la capacidad de los modelos al reducir la varianza de los datos. Las variables más importantes en los modelos fueron: aspecto, densidad de drenaje, elevación, NDWI y precipitación. La principal limitación identificada en el desempeño de los modelos es la escasa cantidad y distribución irregular de los pozos de caudal conocido en el Perú, factor que parcializa el modelo hacia la costa, la región mejor documentada. El presente estudio sirve como marco referencial para la construcción de futuros modelos de aprendizaje automatizado una vez se amplíe el inventario público de pozos de agua subterránea o en caso privados introduzcan su propio inventario. El código empleado para el procesamiento de variables geoespaciales se encuentra en https://code.earthengine.google.com/fe63cd6184b009824ed3c843fdc5544d. El código utilizado para la construcción de modelos se encuentra registrado en Github en https://github.com/cesport/Tesis. Aplicaciones para visualizar los resultados de manera interactiva están disponibles para computadoras en https://cesarportocarrero.users.earthengine.app/view/gwp-peru y dispositivos móviles en https://cesarportocarrero.users.earthengine.app/view/gwp-peru-movil.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/17705
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPEes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-sa/2.5/pe/*
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectEstrés hídricoes_ES
dc.subjectAguas subterráneases_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.01.01es_ES
dc.titleClasificación del territorio peruano de acuerdo con su potencial de agua subterránea utilizando algoritmos de aprendizaje automatizadoes_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
renati.advisor.dni46893866
renati.author.dni73617800
renati.discipline732016es_ES
renati.jurorBeltran Castañon, Cesar Armandoes_ES
renati.jurorLarrea Gallegos, Gustavo Martines_ES
renati.jurorRodríguez Uceda, Julio Benjamínes_ES
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_ES
renati.typehttps://purl.org/pe-repo/renati/type#tesises_ES
thesis.degree.disciplineIngeniería Civiles_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Facultad de Ciencias e Ingenieríaes_ES
thesis.degree.levelTítulo Profesionales_ES
thesis.degree.nameIngeniero Civiles_ES

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
PORTOCARRERO_RODRIGUEZ_CESAR_CLASIFICACIÓN_TERRITORIO_PERUANO.pdf
Size:
1.99 MB
Format:
Adobe Portable Document Format
Description:
Texto completo

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: