Diseño y evaluación técnica de redes de comunicación de Internet de las cosas en ambientes remotos de montaña. WIFI-LPWAN vs M2M-IoT Satelital
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Resumen
El monitoreo de variables ambientales en regiones montañosas del Perú representa un
desafío técnico y económico, debido a la limitada infraestructura de telecomunicaciones
presente en estas áreas. En este contexto, la presente investigación tiene como objetivo
comparar el rendimiento y los costos asociados a dos tecnologías de comunicación
inalámbrica: una red híbrida WiFi-LPWAN y una red satelital M2M-IoT. El análisis se
centra en la velocidad de transmisión de datos, así como en los costos de implementación,
operación y mantenimiento. El estudio inicia con una revisión de literatura, identificando
antecedentes tanto a nivel nacional (e.g., Cusco y Áncash) como internacional
(e.g., Nepal e India). Posteriormente, se evalúa el desempeño de ambas tecnologías en
un entorno simulado correspondiente a la laguna Arhuaycocha, en la cordillera Blanca.
Para el diseño de la red WiFi-LPWAN se utilizaron modelos de propagación semiempíricos
como Okumura-Hata, COST231-Hata e ITU-R P.1546, mientras que para la red
M2M-IoT satelital se empleó el modelo de pérdida de trayectoria libre. Se calculó la
atenuación de la señal, la relación señal-ruido (SNR) y la velocidad de transmisión de
datos. Los resultados muestran que es posible alcanzar velocidades teóricas mínimas
de 4.3 kbps para WiFi-LPWAN y de 133.5 kbps para M2M-IoT satelital, considerando
un ancho de banda de 125 kHz. En cuanto al consumo energético, se encontró que la
red LPWAN requiere solo el 14.6% del consumo energético necesario para el segmento
satelital. Respecto a la disponibilidad, LPWAN alcanza un valor promedio del 81 %,
mientras que M2M-IoT satelital alcanza un 99.9 %. Asimismo, se identificó que la planificación
de cobertura es ligeramente más favorable para la red satelital. Además, se
evaluó la viabilidad económica de ambas tecnologías en un escenario de monitoreo en
tiempo real de la laguna peligrosa Arhuaycocha. Los resultados indican que, en términos
de Valor Actual Neto (VAN) y Tasa Interna de Retorno (TIR), la red M2M-IoT satelital
resulta más eficiente económicamente. No obstante, para aplicaciones que requieren
transmisión continua de datos, como el monitoreo ambiental de lagunas peligrosas, la
red WiFi-LPWAN se posiciona como la opción más adecuada por su mayor flexibilidad
y capacidad de transmisión sin restricciones asociadas a planes de datos y su menor consumo
energético. Finalmente, los resultados de este estudio contribuyen a comprender
el impacto de las telecomunicaciones en la gestión de problemas ambientales emergentes
relacionados con el cambio climático.
The monitoring of environmental variables in mountainous regions of Peru represents a technical and economic challenge, due to the limited telecommunications infrastructure present in these areas. In this context, the present research aims to compare the performance and costs associated with two wireless communication technologies: a hybrid WiFi-LPWAN network and an M2M-IoT satellite network. The analysis focuses on data transmission speed, as well as implementation, operation and maintenance costs. The study begins with a literature review, identifying antecedents at both national (e.g., Cusco and Ancash) and international (e.g., Nepal and India) levels. Subsequently, the performance of both technologies is evaluated in a simulated environment corresponding to the Arhuaycocha lake, in the Cordillera Blanca mountain range. Semi-empirical propagation models such as Okumura-Hata, COST231-Hata and ITU-R P.1546 were used for the design of the WiFi-LPWAN network, while the free path loss model was used for the satellite M2M-IoT network. Signal attenuation, signal-to-noise ratio (SNR) and data rate were calculated. The results show that it is possible to achieve minimum theoretical rates of 4.3 kbps for WiFi-LPWAN and 133.5 kbps for satellite M2M-IoT, considering a bandwidth of 125 kHz. Regarding energy consumption, it was found that the LPWAN network requires only 14.6% of the energy consumption needed for the satellite segment. Regarding availability, LPWAN achieves an average value of 81 %, while satellite M2M-IoT achieves 99.9 %. It was also identified that coverage planning is slightly more favorable for the satellite network. In addition, the economic viability of both technologies was evaluated in a real-time monitoring scenario of the Arhuaycocha hazardous lagoon. The results indicate that, in terms of Net Present Value (NPV) and Internal Rate of Return (IRR), the satellite M2M-IoT network is more economically efficient. However, for applications that require continuous data transmission, such as environmental monitoring of dangerous lagoons, the WiFi-LPWAN network is positioned as the most suitable option due to its greater flexibility and transmission capacity without restrictions associated with data plans and its lower energy consumption. Finally, the results of this study contribute to understanding the impact of telecommunications on the management of emerging environmental problems related to climate change.
The monitoring of environmental variables in mountainous regions of Peru represents a technical and economic challenge, due to the limited telecommunications infrastructure present in these areas. In this context, the present research aims to compare the performance and costs associated with two wireless communication technologies: a hybrid WiFi-LPWAN network and an M2M-IoT satellite network. The analysis focuses on data transmission speed, as well as implementation, operation and maintenance costs. The study begins with a literature review, identifying antecedents at both national (e.g., Cusco and Ancash) and international (e.g., Nepal and India) levels. Subsequently, the performance of both technologies is evaluated in a simulated environment corresponding to the Arhuaycocha lake, in the Cordillera Blanca mountain range. Semi-empirical propagation models such as Okumura-Hata, COST231-Hata and ITU-R P.1546 were used for the design of the WiFi-LPWAN network, while the free path loss model was used for the satellite M2M-IoT network. Signal attenuation, signal-to-noise ratio (SNR) and data rate were calculated. The results show that it is possible to achieve minimum theoretical rates of 4.3 kbps for WiFi-LPWAN and 133.5 kbps for satellite M2M-IoT, considering a bandwidth of 125 kHz. Regarding energy consumption, it was found that the LPWAN network requires only 14.6% of the energy consumption needed for the satellite segment. Regarding availability, LPWAN achieves an average value of 81 %, while satellite M2M-IoT achieves 99.9 %. It was also identified that coverage planning is slightly more favorable for the satellite network. In addition, the economic viability of both technologies was evaluated in a real-time monitoring scenario of the Arhuaycocha hazardous lagoon. The results indicate that, in terms of Net Present Value (NPV) and Internal Rate of Return (IRR), the satellite M2M-IoT network is more economically efficient. However, for applications that require continuous data transmission, such as environmental monitoring of dangerous lagoons, the WiFi-LPWAN network is positioned as the most suitable option due to its greater flexibility and transmission capacity without restrictions associated with data plans and its lower energy consumption. Finally, the results of this study contribute to understanding the impact of telecommunications on the management of emerging environmental problems related to climate change.
Descripción
Palabras clave
Sistemas inalámbricos de comunicación, Internet de las cosas, Telecomunicaciones--Efecto de las montañas--Perú
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto donde se indique lo contrario, la licencia de este ítem se describe como info:eu-repo/semantics/openAccess
