ETM idóneo potencial de profesores en formación inicial al planificar la enseñanza de cuadriláteros con apoyo de la inteligencia artificial generativa
Fecha
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Resumen
El estudio analiza el Espacio de Trabajo Matemático (ETM) idóneo de profesores en
formación cuando planifican el tema de cuadriláteros con el apoyo de inteligencia artificial
(IA) generativa. La investigación se fundamenta en la necesidad de preparar a los docentes
para la integración de la inteligencia artificial en el contexto educativo, superando desafíos
como la dependencia tecnológica y promoviendo una comprensión más profunda de los
cuadriláteros. El marco teórico del ETM permite articular las génesis semiótica, instrumental
y discursiva. Metodológicamente, posee un enforque cualitativo con un estudio de caso
intrínseco con dos participantes (PF1 y PF2). Los resultados exponen que los docentes en
formación planifican sesiones de aprendizaje estructuradas, integrando herramientas de IA
como ChatGPT, Canva IA e Ideogram IA para diseñar fichas, generar imágenes y mejorar
la redacción. Asimismo, se observa en las sesiones de aprendizaje del PF1 y PF2 una
predominante activación de las génesis semiótica e instrumental.
Entre las principales conclusiones de la investigación, se evidenció cómo se articula
el trabajo matemático en la planificación sobre el tema de cuadriláteros a través del análisis
de los planos [Sem-Ins], [Dis-Ins] y [Sem-Dis], sin embargo, se observa una posible
predominancia del plano [Sem-Ins]. Además, se mostró la activación predominante de la
Génesis Semiótica y la Génesis Instrumental en ambos docentes. El PF1 y PF2 utilizan IA
generativa, para optimizar la redacción de situaciones significativas, diseñar preguntas, y
generar imágenes o materiales que facilitan la enseñanza. Este enfoque evidencia que la
integración de IA permite a los profesores en formación planificar con mayor precisión,
creatividad y claridad. Finalmente, se proponen futuras investigaciones que amplíen el
alcance del ETM idóneo a contextos educativos diversos y diseñen programas efectivos de
formación en IA generativa.
The study examines teachers' ideal Mathematical Work Space (MWS) in training while planning quadrilateral topics, utilizing generative artificial intelligence (AI) as a support tool. This research is motivated by the necessity to equip teachers with the skills to integrate AI into their teaching, addressing challenges such as technological dependency while promoting a comprehensive understanding of quadrilaterals. The MWS framework facilitates the articulation of semiotic, instrumental, and discursive development. Methodologically, the study employs a qualitative approach, focusing on an intrinsic case study involving two participants (PF1 and PF2). Findings indicate that teachers in training designed structured session plans that incorporated AI tools such as ChatGPT, Canva AI, and Ideogram AI to create worksheets, generate images, and enhance writing. Additionally, the session plans from PF1 and PF2 reveal a notable engagement with the semiotic and instrumental aspects of the MWS, fostering connections between representations. Among the main conclusions of the research, it was revealed how mathematical work is articulated in lesson planning on the topic of quadrilaterals through the analysis of the [Sem- Ins], [Dis-Ins], and [Sem-Dis] planes. However, a possible predominance of the [Sem-Ins] plane was observed. Additionally, the predominant activation of Semiotic Genesis and Instrumental Genesis in both teachers was highlighted. PF1 and PF2 use generative AI tools to optimize the drafting of meaningful situations, design questions, and generate images or materials that facilitate teaching. This approach demonstrates that AI integration enables preservice teachers to plan with greater precision, creativity, and clarity. Finally, future research is proposed to expand the scope of an optimal Mathematical Work Space (MWS) to diverse educational contexts and to design effective training programs in generative AI.
The study examines teachers' ideal Mathematical Work Space (MWS) in training while planning quadrilateral topics, utilizing generative artificial intelligence (AI) as a support tool. This research is motivated by the necessity to equip teachers with the skills to integrate AI into their teaching, addressing challenges such as technological dependency while promoting a comprehensive understanding of quadrilaterals. The MWS framework facilitates the articulation of semiotic, instrumental, and discursive development. Methodologically, the study employs a qualitative approach, focusing on an intrinsic case study involving two participants (PF1 and PF2). Findings indicate that teachers in training designed structured session plans that incorporated AI tools such as ChatGPT, Canva AI, and Ideogram AI to create worksheets, generate images, and enhance writing. Additionally, the session plans from PF1 and PF2 reveal a notable engagement with the semiotic and instrumental aspects of the MWS, fostering connections between representations. Among the main conclusions of the research, it was revealed how mathematical work is articulated in lesson planning on the topic of quadrilaterals through the analysis of the [Sem- Ins], [Dis-Ins], and [Sem-Dis] planes. However, a possible predominance of the [Sem-Ins] plane was observed. Additionally, the predominant activation of Semiotic Genesis and Instrumental Genesis in both teachers was highlighted. PF1 and PF2 use generative AI tools to optimize the drafting of meaningful situations, design questions, and generate images or materials that facilitate teaching. This approach demonstrates that AI integration enables preservice teachers to plan with greater precision, creativity, and clarity. Finally, future research is proposed to expand the scope of an optimal Mathematical Work Space (MWS) to diverse educational contexts and to design effective training programs in generative AI.
Descripción
Palabras clave
Inteligencia artificial, Personal docente--Capacitación, Matemáticas--Estudio y enseñanza (Preescolar)
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto donde se indique lo contrario, la licencia de este ítem se describe como info:eu-repo/semantics/openAccess
