Comparativa ambiental de técnicas de eliminación biológica y química de fósforo en PTARs de gran escala en Lima
Fecha
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Resumen
En los últimos años, la gestión de aguas residuales en el Sur Global ha enfrentado
ineficiencias significativas por limitaciones tecnológicas, escasez de recursos y legislaciones
laxas. Lima es un ejemplo, ya que tiene dos plantas altamente centralizadas limitadas a
tratamiento primario, por tanto, incapaces de mitigar impactos ambientales y resguardar la
salud humana. Frente a este desafío, esta investigación propone un marco metodológico basado
en el Análisis de Ciclo de Vida (ACV), para analizar y comparar el perfil ambiental de sistemas
de tratamiento de aguas residuales para PTARs de gran escala (150,000 p.e.) en Lima, con el
fin de orientar la toma de decisiones en el sector. La novedad de este estudio es la comparación
de tecnologías biológicas y químicas de remoción de P en distintos casos de carga de
contaminantes, para establecer un ranking basado en impactos de calentamiento global y
eutrofización.
Se compararon tres alternativas enfocadas en la eliminación biológica y química de
fósforo: Ludzak & Ettinger Modificado (MLE), A2O (anaerobio-anóxico-aeróbico) y A2O con
elutriación de fangos. El marco metodológico comprende el diseño de los trenes para cumplir
regulaciones europeas, dado que la regulación peruana no exige remoción de nutrientes. Con
los resultados obtenidos en el software de diseño, se construyeron los Inventarios de Ciclo de
Vida (energía, químicos, calidad del efluente), para estimar impactos en calentamiento global
y eutrofización, usando los factores de caracterización del método IPCC 2013 para
calentamiento global y del método CML-IA baseline para eutrofización, ambos
implementados en el software SimaPro. Se realizó también un análisis de sensibilidad con
variaciones de carga de contaminantes, para evaluar si un cambio en estos parámetros
representa un cambio en la toma de decisiones, dado que el diseño inicial asumió una carga
media con base en fuentes bibliográficas. Se evaluó, además, si un cambio de matriz energética
más dependiente de recursos fósiles (Global) puede representar también una variación en la
toma de decisiones frente a una matriz con fuente principal en sistemas hidroeléctricos..
En el escenario base de carga media, la eutrofización del influente fue de 47.4 kg PO4
-, y todos los trenes la redujeron por lo menos en 85%, con niveles alrededor de 6. kg PO4 -. Los
resultados de calentamiento global se estimaron entre 200 y 220 g CO2 eq para MLE y A2O
con elutriación, respectivamente. En el análisis de sensibilidad, se simularon cargas baja y alta.
Los resultados de eutrofización fueron de 26.76 y 71.10 kg PO4
-para carga baja y alta, respectivamente. Se obtuvo una reducción de hasta 90% para carga alta (7.20 kg PO4
-) y de 80% para carga baja (5.10 a 5.14 kg PO4 -). MLE se mantuvo como la opción de menor impacto
de calentamiento global para ambos casos, con un promedio de 132 g CO2 eq para carga baja
y 447 g CO2 eq para carga alta. La sensibilización de la matriz energética significó un
incremento en calentamiento global de hasta 75%, alcanzando valores de 700 g CO2 eq.
Este estudio revela que, a diferencia de lo postulado comúnmente en la literatura, las
tecnologías enfocadas en la eliminación química de fósforo pueden, bajo ciertas condiciones,
generar un impacto ambiental hasta un 12% menor en calentamiento global frente a sus
contrapartes enfocadas en la eliminación biológica de fósforo. Esto abre una nueva perspectiva
para optimizar el tratamiento de aguas residuales de cara al futuro.
In recent years, wastewater management in the Global South has faced significant inefficiencies due to technological limitations, resource scarcity, and weak regulatory frameworks. Lima is a clear example, relying on two highly centralized wastewater treatment plants that provide only primary treatment, and thus fail to mitigate environmental impacts or protect public health. To address this challenge, this study proposes a methodological framework based on Life Cycle Assessment (LCA) to analyze and compare the environmental performance of large-scale wastewater treatment systems (i.e., 150,000 population equivalent) in Lima, with the goal of supporting and informing decision-making in the sector. The novelty of this work lies in the comparison of biological and chemical treatment technologies under varying pollutant load scenarios, establishing an environmental performance ranking based on global warming and eutrophication impacts. Specifically, three phosphorus removal alternatives were evaluated: Modified Ludzak– Ettinger (MLE), Anaerobic–Anoxic–Oxic (A2O), and A2O combined with sludge elutriation. The proposed methodology includes the design of treatment trains in compliance with European standards, as current Peruvian regulations do not mandate nutrient removal. Design outcomes were used to develop life cycle inventories (energy use, chemical consumption, effluent quality), which were then used to estimate environmental impacts in the categories of global warming and eutrophication using characterization factors from SimaPro software. To strengthen the analysis, a sensitivity assessment was performed by varying pollutant loads, in order to evaluate whether changes in influent characteristics would influence technology selection since the initial design was based on average loads reported in the literature. Additionally, the influence of an energy matrix more reliant on fossil fuels than Peru’s was also assessed. Under the baseline scenario with average pollutant loads, influent eutrophication was estimated at 47.4 kg PO4- eq, and all treatment trains achieved at least an 85% reduction, with effluent values around 6.9 kg PO4- eq. Global warming impacts ranged from 200 to 220 g CO2- eq for MLE and A2O with sludge elutriation, respectively. The sensitivity analysis included simulations under low and high pollutant loads, yielding influent eutrophication values of 26.76 and 71.10 kg PO4- eq. Reductions reached up to 90% in high-load scenarios (around 7.20 kg PO4- eq), and up to 80% in low-load conditions (5.10–5.14 kg PO4- eq). MLE consistently showed the lowest global warming impact, with average values of 132 g CO2-eq under low load and 447 g CO2-eq under high load—almost twice the value observed for the average load scenario. When a more fossil-dependent energy matrix was assumed, global warming impacts increased by up to 75%, reaching 700 g CO2-eq. This study reveals that, contrary to what is commonly stated in literature, technologies based on chemical precipitation for phosphorus removal can, under certain conditions, generate up to 12% lower environmental impact in terms of global warming compared to their counterparts focused on biological phosphorus removal. This opens a new perspective for optimizing wastewater treatment in the future.
In recent years, wastewater management in the Global South has faced significant inefficiencies due to technological limitations, resource scarcity, and weak regulatory frameworks. Lima is a clear example, relying on two highly centralized wastewater treatment plants that provide only primary treatment, and thus fail to mitigate environmental impacts or protect public health. To address this challenge, this study proposes a methodological framework based on Life Cycle Assessment (LCA) to analyze and compare the environmental performance of large-scale wastewater treatment systems (i.e., 150,000 population equivalent) in Lima, with the goal of supporting and informing decision-making in the sector. The novelty of this work lies in the comparison of biological and chemical treatment technologies under varying pollutant load scenarios, establishing an environmental performance ranking based on global warming and eutrophication impacts. Specifically, three phosphorus removal alternatives were evaluated: Modified Ludzak– Ettinger (MLE), Anaerobic–Anoxic–Oxic (A2O), and A2O combined with sludge elutriation. The proposed methodology includes the design of treatment trains in compliance with European standards, as current Peruvian regulations do not mandate nutrient removal. Design outcomes were used to develop life cycle inventories (energy use, chemical consumption, effluent quality), which were then used to estimate environmental impacts in the categories of global warming and eutrophication using characterization factors from SimaPro software. To strengthen the analysis, a sensitivity assessment was performed by varying pollutant loads, in order to evaluate whether changes in influent characteristics would influence technology selection since the initial design was based on average loads reported in the literature. Additionally, the influence of an energy matrix more reliant on fossil fuels than Peru’s was also assessed. Under the baseline scenario with average pollutant loads, influent eutrophication was estimated at 47.4 kg PO4- eq, and all treatment trains achieved at least an 85% reduction, with effluent values around 6.9 kg PO4- eq. Global warming impacts ranged from 200 to 220 g CO2- eq for MLE and A2O with sludge elutriation, respectively. The sensitivity analysis included simulations under low and high pollutant loads, yielding influent eutrophication values of 26.76 and 71.10 kg PO4- eq. Reductions reached up to 90% in high-load scenarios (around 7.20 kg PO4- eq), and up to 80% in low-load conditions (5.10–5.14 kg PO4- eq). MLE consistently showed the lowest global warming impact, with average values of 132 g CO2-eq under low load and 447 g CO2-eq under high load—almost twice the value observed for the average load scenario. When a more fossil-dependent energy matrix was assumed, global warming impacts increased by up to 75%, reaching 700 g CO2-eq. This study reveals that, contrary to what is commonly stated in literature, technologies based on chemical precipitation for phosphorus removal can, under certain conditions, generate up to 12% lower environmental impact in terms of global warming compared to their counterparts focused on biological phosphorus removal. This opens a new perspective for optimizing wastewater treatment in the future.
Descripción
Palabras clave
Aguas residuales--Tratamiento, Plantas para tratamiento de agua--Ciclo de vida--Análisis costo-beneficio, Aguas residuales--Purificación, Calentamiento global--Aspectos ambientales