Facultad de Ciencias e Ingeniería
Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/7
Browse
1 results
Search Results
Item Validation of the NVDLA architecture using its aws virtual prototype-FPGA co-simulation platform(Pontificia Universidad Católica del Perú, 2023-05-23) Freidenson Bejar, David Steven; Villegas Castillo, Ernesto CristopherLa inferencia de Redes Neuronales Profundas (o DNNs, por sus siglas en inglés, Deep Neural Networks) se ha vuelto cada vez más demandante en términos de almacenamiento de memoria, complejidad computacional y consumo de energía. Desarrollar hardware especializado en DNNs puede ser un proceso tedioso, que se alarga aún más si se considera el tiempo requerido en escribir software para ello. Así, esta tesis consiste en la validación del acelerador de hardware de redes neuronales NVDLA (por sus siglas en inglés, Nvidia Deep Learning Accelerator) utilizando un ambiente de co-simulación basado en su plataforma híbrida: un CPU implementado como Prototipo Virtual (PV), basado en el Quick Emulator (QEMU), y el modelo de hardware en RTL del NVDLA dentro de un FPGA. Para ello, la arquitectura más portátil del NVDLA nv_small es configurada en el FPGA de una instancia F1 del servicio E2C AWS. Para complementar el sistema, el PV del NVDLA es usado, consistiendo de un CPU Arm emulado con QEMU, ejecutando el sistema operativo Linux y el software runtime del NVDLA, dentro de una capa de SystemC/TLM conectada al FPGA de la instancia F1 a través de un puerto PCIe. Una vez que la plataforma híbrida de co-simulación está configurada, se ejecutan regresiones de pruebas de hardware en la implementación en el FPGA para revisar la propia funcionalidad e integridad de los bloques que componen al NVDLA. Luego, se ejecutan pruebas de sanidad de software en el PV para confirmar la configuración correcta de todo el sistema integrado. Finalmente, la DNN AlexNet es ejecutada. Los resultados muestran la propia funcionalidad del hardware y del PV, y que la red AlexNet se ejecutó exitosamente en el ambiente de co-simulación, tomando aproximadamente 112 minutos.