Facultad de Ciencias e Ingeniería
Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/7
Browse
4 results
Search Results
Item Obtención de quitosanas con peso molecular y grado de acetilación controlados(Pontificia Universidad Católica del Perú, 2020-01-23) Sánchez Zárate, Luis Felipe Alberto; Nakamatsu Kuniyoshi, JavierLa quitina es un polisacárido estructural que se encuentra en algunos crustáceos, insectos, hongos y levaduras. La desacetilación de la quitina produce quitosana, la cual ha sido estudiada por su alto potencial en aplicaciones como el transporte de fármacos, la absorción de iones metálicos, membranas e ingeniería de tejidos. La quitosana es un copolímero lineal conformado por unidades N-acetil-D-glucosamina y D-glucosamina. Las propiedades fisicoquímicas y mecánicas de la quitosana están determinadas principalmente por tres parámetros: el grado de acetilación (DA) y el peso molecular (Mw). La gran mayoría de estudios reportados se han realizado con quitosanas extraídas de distintas fuentes y por diferentes métodos, por ello es de espera que cada una de estas quitosanas tengan diferentes DA y Mw, y con ello diferentes propiedades. Además, varios estudios no reportan todos los parámetros antes mencionados. Así, en algunos casos, se reportan diferencias en las propiedades con, por ejemplo, solubilidad, viscosidad y ángulo de contacto. Esto genera incongruencia en las propiedades reportadas sobre la quitosana. Por lo mencionado, es importante contar con muestras de quitosana a medida; es decir, con características estructurales conocidas y que se hayan determinado rigurosamente. En este trabajo se evaluaron métodos que permiten obtener estas quitosanas a medida, con Mw y DA específicos, este se realizó a partir de una quitosana de un DA igual a 10,6% y su posterior reacetilación con anhidrido acético en medio acuoso ácido y con cloruro de acetilo en un líquido iónico en los que se obtuvo valores de DA entre 28 y 89%. Además, se evaluaron formas para reducir el Mw de manera controlada con la aplicación de ultrasonido y la hidrolisis en medio ácido, en los que se obtuvo valores de Mw entre 131 y 1300 kDa. Estos dos parámetros mencionados se determinaron por espectroscopía de resonancia magnética nuclear, espectroscopía infrarroja, cromatografía de permeación en gel y viscosimetría capilar.Item Formación y caracterización de partículas de quitosana y alginato para encapsulamiento de agentes antioxidantes(Pontificia Universidad Católica del Perú, 2018-08-07) Córdova Mariño, Diego Andrés; Nakamatsu Kuniyoshi, JavierExisten diversos tipos de biopolímeros presentes en la naturaleza que por lo general son biocompatibles y biodegradables como es el caso del alginato de sodio. Algunos incluso presentan propiedades antibacterianas como la quitosana que proviene de la quitina, presente en el exoesqueleto de los crustáceos e insectos. Asimismo, existen productos naturales que, por su composición química, presentan propiedades antioxidantes, por ejemplo, el aceite de oliva o el aceite de sacha inchi. Este último proviene de las semillas del fruto del sacha inchi autóctono de la región amazónica en Sudamérica. Por otro lado, se sabe que la microencapsulación es un proceso mediante el cual un gas, líquido o material sólido se rodea y queda encerrado por una pared polimérica porosa que contiene una sustancia activa y de esta forma se protege y se aísla del entorno para, posteriormente, liberarlo según sea necesario. El presente trabajo estudió la formación de microcápsulas de quitosana y alginato para encapsular compuestos antioxidantes provenientes de distintos tipos de aceites como el de soya, de oliva y de sacha inchi. Se formaron emulsiones de cada aceite a analizar y se varió la cantidad de surfactante. Se estudió la estabilidad de las emulsiones por un periodo de un mes. Luego, se caracterizaron por medio de la técnica ATR-FTIR. Posteriormente, se analizó la eficiencia de la encapsulación y su liberación con respecto al tiempo. Por último, se analizó la actividad antioxidante que presentaban los aceites, los polímeros y las microcápsulas por medio de una técnica de transferencia de electrones (ABTS).Item Obtención de quitosanas con alto grado de desacetilación(Pontificia Universidad Católica del Perú, 2018-05-07) Cánepa Ivazeta, Jimmy Laurence; Nakamatsu Kuniyoshi, JavierLa quitina es el segundo polisacárido en abundancia en la naturaleza y a partir de ella se obtiene la quitosana, un polielectrolito catiónico cuando se disuelve en soluciones acuosas ácidas que es biodegradable, biocompatible, bacteriostático, antifúngico y tiene la capacidad para formar películas, fibras y matrices porosas ligeras. Así, la quitosana es un polímero natural interesante para aplicaciones en medicina, farmacia, alimentos, cosmética, agricultura, tratamiento de aguas, etc. La quitina se transforma en quitosana por medio de la desacetilación. El grado de desacetilación (DDA) indica la cantidad total de grupos acetamida convertidos en amina, lo que determina directamente sus propiedades (como solubilidad, basicidad, adsorción, entre otras), funcionalidad y, por tanto, las aplicaciones del polímero. En primer lugar, se desacetiló quitina (sólida y disuelta en base a baja temperatura) por calentamiento convencional y con microondas. En el primer método se evaluó el tiempo de reacción (entre 0,5 y 5 h), y en el segundo, el número de ciclos de reacción sin variar el tiempo neto de irradiación (10 min). En segundo lugar, se desacetiló quitosana por el método convencional cambiando la concentración de la base. Además, se realizó la desacetilación con microondas, con la variable del número de ciclos de irradiación, cada uno de 1,5 min. Finalmente, se compararon los métodos entre sí. Los resultados fueron evaluados en función al DDA, analizado por espectrometría infrarroja (FT-IR) y espectroscopia de resonancia magnética nuclear de protón (1H-RMN), y al peso molecular, cuantificado por cromatografía de permeación de gel (GPC) y viscosimetría capilar. En general, todos los resultados muestran que se produce la degradación del polímero durante la desacetilación. Sin embargo, los métodos con microondas y de quitina alcalina no son tan agresivos como el método convencional, de manera que reducen el rompimiento de las cadenas. Se logró obtener quitosanas totalmente desacetiladas (>99% DDA) y con relativamente alto peso molecular (>700 kDa).Item Síntesis y caracterización de nanopartículas de oro con quitosana como agente reductor y estabilizador(Pontificia Universidad Católica del Perú, 2015-12-07) Requejo Roque, Katherinne Isabel; Nakamatsu Kuniyoshi, JavierEl desarrollo de la nanotecnología ha permitido la elaboración de nanomateriales para su uso en diversas áreas como óptica, catálisis, electrónica y medicina. En la actualidad, el control del tamaño, forma, composición y estabilidad de las nanopartículas sigue siendo un desafío para ciertas aplicaciones por lo que continúan las investigaciones sobre la síntesis y caracterización de nanomateriales. Entre las nanopartículas metálicas, las de oro (nAu) son consideradas las más estables aunque los métodos de síntesis tradicionales involucran el uso de reactivos tóxicos para el medio ambiente o para su uso en medicina. En el presente trabajo se obtuvieron nAu por medio de un método de síntesis verde que utilizó el biopolímero quitosana como agente reductor y estabilizador. Estas nanopartículas de oro con quitosana fueron caracterizadas por técnicas microscópicas y espectroscópicas. En primer lugar, se sintetizaron nAu en solución acuosa por medio de la reducción de iones Au3+ con quitosana bajo calentamiento y agitación constante. Mediante la caracterización por espectroscopia UV-Vis, se evaluaron distintos parámetros como relación molar quitosana/Au3+, tiempo de reacción, temperatura, pH y concentración de ambos reactivos en la formación y estabilidad de las nAu. Las nAu iniciaron su formación dentro de los 20 minutos de reacción, siendo estables aquellas con relación molar quitosana/Au3+ desde 95/1 hasta 367/1 que fueron sintetizadas a pH 4,46, a 75°C y con concentraciones de quitosana y HAuCl4 de 0,27% (w/v) y 1,58 x 10-4 mol/L, respectivamente. Asimismo, para las nAu estables se observó una banda de plasmones de superficie a 522 nm. A partir de las técnicas de TEM, ELS y AFM, se concluyó que las nAu son esféricas, monodispersas, poseen tamaño entre 10 y 15 nm y su superficie tiene carga positiva. En segundo lugar, y a modo de comparación, se sintetizaron nAu con otros agentes reductores como los monómeros de quitosana (D-glucosamina y N-acetil-D-glucosamina), glucosa y citrato de sodio con las condiciones de reacción reportadas en la literatura para la obtención de nAu estables. Para las síntesis con los monómeros de quitosana y glucosa se observó la reducción de los iones Au3+ más no la estabilización de las nAu formadas pero para la síntesis con citrato de sodio se obtuvieron nAu estables a pH 6. Luego se logró obtener a pH 4,46 nAu con quitosana y citrato al mismo tiempo para compararlas con las nAu con quitosana. Por último, se llevó a cabo la reducción en fase heterogénea, para lo que se utilizaron perlas y películas de quitosana para la síntesis de nAu. Se observó una ligera diferencia en la velocidad de reacción a los distintos pH (4 y 8). Para las perlas de quitosana y las de quitosana entrecruzadas con epiclorhidrina la velocidad de reducción fue comparable con la de la reducción homogénea. En general, una mayor porosidad de la estructura favoreció la formación de nAu de manera más homogénea, siendo las películas las que tardaron más tiempo en formar nAu.