Ingeniería de Control y Automatización

Permanent URI for this collectionhttp://98.81.228.127/handle/20.500.12404/767

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Automated Response Strategy and its Testbed Implementation for Contamination Management in Water Distribution Systems
    (Pontificia Universidad Católica del Perú, 2024-11-20) Flores Juárez, Patricio José; Sotomayor Moriano, Javier; Reger, Johann
    Access to clean drinking water is crucial worldwide. Throughout history, various methods of distribution have been developed to ensure that people have access to good quality water. Nowadays, there are various risks associated with water contamination, including those caused intentionally and unintentionally. Responding to such incidents typically involves manual decisionmaking processes, emphasizing the need for automated strategies. This thesis introduces a novel approach employing Mixed Integer Nonlinear Programming (MINLP) to optimize isolation strategies and flushing methods within water distribution systems (WDSs). By integrating mass conservation and energy conversion equations, coupled with Hazen-Williams equation for pressure drop calculations, the proposed model aims to minimize contamination risks arising from various sources, including natural disasters and cyber-attacks. The methodology undergoes validation and implementation through simulated benchmark scenarios to ensure its effectiveness and precision. Subsequently, real-world contamination scenarios are addressed within a practical testing environment (Testbed). Automation within the Testbed is achieved through the integration of software on a PC with Programmable Logic Controllers (PLCs). Moreover, the study presents a comprehensive analysis of valve manipulation to mitigate contamination risks, alongside a comparison against scenarios without intervention. By automating response decisions and operational processes, the methodology showcases promising results in effectively managing contamination incidents within WDSs, thus offering a significant contribution to water system resilience and security.
  • Thumbnail Image
    Item
    Model-based fault diagnosis via structural analysis of a reverse osmosis plant
    (Pontificia Universidad Católica del Perú, 2021-05-11) Göpfert, Johannes Georg; Pérez Zúñiga, Carlos Gustavo; Reger, Johann
    Water desalination is one approach to force water scarcity. One of the processes used for desalination is reverse osmosis. Like other systems, a reverse osmosis plant is susceptible to faults. A fault can lead to a loss of efficiency, or if the fault is severe to a total breakdown. Appropriate measures can minimize the impact of faults, but this requires in time fault detection. The following thesis shows a proposal for an online fault diagnosis system of a reverse osmosis plant. For the model-based approach, a mathematical model of a reverse osmosis plant has been developed. The model contains a new approach for modeling the interaction between the high-pressure pump, the brine valve, and the membrane module. Furthermore, six faults considered for fault diagnosis have been modeled. Two of the faults are plant faults: The leakage of the feed stream and membrane fouling. The other four faults are sensor or actuator malfunctions. The fault diagnosis system is developed via structural analysis, a graph-based approach to determine a mathematical model’s overdetermined systems of equations. With the structural analysis, 73 fault-driven minimal structurally overdetermined (FMSO) sets have been determined. The results show that all six faults are detectable. However, two faults are not isolable. Five of the FMSO sets have been chosen to deduce the residuals used for online fault detection and isolation. The simulations demonstrate that the calculated residuals are appropriate to detect and isolate the faults. If one assumes that only the considered faults occur, it is possible to determine some faults’ magnitude.
  • Thumbnail Image
    Item
    Energy-Based Control for the Cart-Pole System in Implicit Port-Hamiltonian Representation
    (Pontificia Universidad Católica del Perú, 2020-03-19) Huamán Loayza, Alex Smith; Reger, Johann; Cieza Aguirre, Oscar B.; Pérez Zúñiga, Carlos Gustavo
    This master thesis is devoted to the design, analysis, and experimental validation of an energy-based control strategy for the well-known benchmark cart-pole system in implicit Port-Hamiltonian (PH) representation. The control scheme performs two tasks: swingup and (local) stabilization. The swing-up controller is carried out on the basis of a generalized energy function and consists of bringing the pendulum trajectories from the lower (stable) position to a limit cycle (homoclinic orbit), which passes by the upright (unstable) position, as well as the cart trajectories to the desired point. The (local) stabilizing controller is designed under a novel algebraic Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) technique and ensures the upright (asymptotic) stabilization of the pendulum as well as the cart at a desired position. To illustrate the effectiveness of the proposed control scheme, this work presents simulations and real-time experiments considering physical damping, i.e., viscous friction. The results are additionally contrasted with another energy-based control strategy for the cart-pole system in explicit Euler-Lagrange (EL) representation.