Informática con mención en Ciencias de la Computación

Permanent URI for this collectionhttp://98.81.228.127/handle/20.500.12404/6357

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    Integración de imágenes de nubes de puntos obtenidas por drones
    (Pontificia Universidad Católica del Perú, 2021-09-16) Tippe Quintanilla, Percy Kim; Sipiran Mendoza, Iván Anselmo
    The Lidar technology is an environment scanning method that produces point cloud images. In this work we study the use of a Kalman filter to combine point cloud images into a single unified 3D map.
  • Thumbnail Image
    Item
    Reconocimiento de elementos de seguridad de billetes utilizando Transfer Learning
    (Pontificia Universidad Católica del Perú, 2021-08-12) Vera Muñoz, David; Sipiran Mendoza, Iván Anselmo
    La falsificación de moneda es un problema en el país y se evidencia en informes periodísticos de incautaciones de billetes y monedas falsificadas que aparecen cada cierto tiempo a nivel nacional; por lo tanto, la necesidad de un sistema de reconocimiento de billetes y monedas es imperativo dado que a la par del crecimiento tecnológico que apoye esta tarea, también la maquinaria y tecnología utilizada para la falsificación de billetes y monedas es más accesible y costeable. La identificación de billetes y monedas falsificadas ha estado enfocada en gran medida en el procesamiento de imágenes. En el presente artículo se utiliza un modelo basado en aprendizaje por transferencia que viene teniendo buenos resultados en problemas específicos de clasificación de imágenes en la actualidad. Se ha construido un conjunto de datos con imágenes de billetes genuinos y falsificados para el entrenamiento y pruebas del modelo. Los resultados obtenidos son muy alentadores y demandan un entrenamiento más robusto con una mayor cantidad de imágenes. Asimismo con algunas mejoras en la arquitectura se podría adaptar un modelo a una aplicación móvil de manera que pueda apoyar al ciudadano de a pie en la identificación de billetes falsificados en tiempo real.
  • Thumbnail Image
    Item
    Comparación de modelos de aprendizaje de máquina en la predicción del incumplimiento de pago en el sector de las microfinanzas
    (Pontificia Universidad Católica del Perú, 2021-06-24) López Malca, Jiam Carlos; Olivares Poggi, Cesar Augusto
    Las instituciones financieras dedicadas a las Microfinanzas brindan sus servicios a un público objetivo que en su mayoría presentan bajos recursos económicos y/o cuyo acceso a los sistemas bancarios tradicionales es limitado, estas instituciones al desarrollarse en un contexto poco favorable los riesgos de incumplimiento en los pagos son mayores en comparación a la banca tradicional. Por tanto, se exige hacer una evaluación económica financiera con mayor grado de detalle, requiriendo para tal fin la participación de un experto del negocio que basado en información obtenida y pericia propia determine si el potencial cliente será un buen pagador. Esta forma de evaluar a un cliente ha evolucionado en el sector financiero en los últimos años, esto debido en gran medida a la aplicación de tecnologías como la inteligencia artificial y el aprendizaje de máquina, ofreciendo una singularidad que es la capacidad de aprender de los datos, demandando menos esfuerzo y participación humana, y redituando mayores niveles de precisión. Se presentan en este artículo los resultados de la experimentación realizada con los siguientes modelos de aprendizaje de maquina: Regresión Logística, XGBoost, Random Forest, Gradient Boosting, Perceptron Multicapa (MLP) y algoritmos de aprendizaje profundo para la predicción del incumplimiento de pagos, aplicándose técnicas de balanceo de submuestreo y sobremuestreo, incluida la técnica de SMOTE. Así mismo, se aplicó la técnica de One Hot Encoding para el tratamiento de variables categóricas. Los diferentes modelos de aprendizaje de maquina se aplicaron a un conjunto de datos proporcionado por una institución peruana líder en el sector de las microfinanzas, reportando los mejores resultados el modelo XGBoost, con una exactitud de 97.53% y un F1-Score de 0.1278.
  • Thumbnail Image
    Item
    Generación de datos sintéticos usando Redes Generativas Adversariales para la minería de datos respetuosa de la privacidad
    (Pontificia Universidad Católica del Perú, 2021-05-28) Montalvo García, Peter Jonathan; Alatrista Salas, Hugo
    La minería de datos permite conocer patrones en grandes volúmenes de datos; pero dentro de estos datos puede haber información sensible que compromete la privacidad. En tal sentido, se han desarrollado técnicas para la minería de datos respetuosa de la privacidad, siendo la más utilizada la privacidad diferencial debido a las propiedades que otorga a los datos resultantes, de la mano de técnicas de aprendizaje profundo. Estas técnicas se han utilizado en conjuntos de datos de números escritos e imágenes, pero no en datos de georreferenciación. El presente trabajo tiene como objetivo medir la eficacia de los datos sintéticos generados a través redes generativas adversariales y privacidad diferencial en datos de georreferenciación. La generación de estos datos se hace a través de selección de datos, sanitización para la obtención de la base de datos sintéticos y evaluación a través de modelos de movilidad a partir de las trazas que sirven para medir la pérdida de información y el riesgo de divulgación. En líneas generales, los resultados demuestran que la aplicación de estas técnicas sobre datos de georreferencia da como producto un conjunto de datos sintéticos con una pérdida de información y riesgo de divulgación bajos, y se concluye que estos conjuntos de datos obtenido se puede realizar una minería de datos similar a la que se haría con los datos originales y sin comprometer información sensible.
  • Thumbnail Image
    Item
    Measuring the attractiveness of tourist spots through credit and debit card transactions
    (Pontificia Universidad Católica del Perú, 2021-03-16) Rojas Bustamante, Leibnitz Pavel; Alatrista Salas, Hugo; Núñez del Prado Cortez, Miguel
    Tourism is an essential economic activity for some regions and countries that has been increasing its value for governments and private companies in the last years. Some researches, found in state of the art, have demonstrated the importance of knowing how tourists behave. Furthermore, several approaches have been performed to identify tourist behavior in different places worldwide using different data sets. Thus, this study’s main purpose is to identify domestic tourists using bank card transactions and define an attractiveness function for every region in the country through the Huff model. Additionally, some communities will be generated for describing tourism mobility. The results obtained in the present work reveal a new way of defining domestic tourists and a function to estimate the attractiveness level for departments in Peru.