Índices de gérmenes de foliaciones holomorfas en el plano
Files
Date
2021-06-16
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Abstract
Un germen de foliación holomorfa singular en (C2, p) con singularidad aislada se
dirá que es de segundo tipo si no presenta sillas-nodos tangentes en su reducción
de singularidades. Entendiendo por singularidad de tipo silla-nodo tangente
como aquel cuya separatriz débil está contenida en el divisor excepcional. La
finalidad de este trabajo es exhibir un criterio que nos permita caracterizar
cuándo un germen de foliación holomorfa en (C2, p) es de segundo tipo. Para tal
fin, estudiamos la teoría de índices para foliaciones holomorfas singulares sobre
(C2, p). También caracterizamos las foliaciones de tipo curva generalizada, vía
el índice de exceso polar. Cabe señalar que el presente trabajo es motivado por
el trabajo debido a Arturo Fernández y Rogério Mol, ([FPM17]). Además de
los trabajos expuestos por Marco Brunella ([BRU97]), Liliana Puchuri ([PM05]),
Yohann Genzmer y Rogério Mol ([GM18]).
A germ of singular holomorphic foliation at (C2, p) with an isolated singularity will be said of second type if it does not present tangent saddle-nodes in its reduction of singularities. Understanding by singularity of tangent saddle-node type as whose weak separatrix is contained in the exceptional divisor. The purpose of this work is to show a criterion that allows us to characterize when a germ of holomorphic foliation at (C2, p) is of second type. That is the reason why we study the theory of indices of singular holomorphic foliations at (C2, p). We also characterize generalized curve foliations, via the polar excess index. It should be noted that this work is motivated by the paper due to Arturo Fernández and Rogério Mol ([FPM17]), Marco Brunella ([BRU97]), Liliana Puchuri ([PM05]), Yohann Genzmer and Rogério Mol ([GM18]).
A germ of singular holomorphic foliation at (C2, p) with an isolated singularity will be said of second type if it does not present tangent saddle-nodes in its reduction of singularities. Understanding by singularity of tangent saddle-node type as whose weak separatrix is contained in the exceptional divisor. The purpose of this work is to show a criterion that allows us to characterize when a germ of holomorphic foliation at (C2, p) is of second type. That is the reason why we study the theory of indices of singular holomorphic foliations at (C2, p). We also characterize generalized curve foliations, via the polar excess index. It should be noted that this work is motivated by the paper due to Arturo Fernández and Rogério Mol ([FPM17]), Marco Brunella ([BRU97]), Liliana Puchuri ([PM05]), Yohann Genzmer and Rogério Mol ([GM18]).
Description
Keywords
Foliaciones (Matemáticas), Curvas algebráicas
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess