Foliaciones algebraicas unidimensionales determinadas únicamente por sus singularidades
Date
2024-03-08
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Abstract
Una foliación algebraica unidimensional Fα es aquella que es generada por un
campo vectorial meromorfo α ∈ H0(Pn,ΘPn(1 − d)), donde d > 1 sobre el
espacio proyectivo complejo Pn. En este trabajo estudiaremos cómo determinar
las foliaciones holomorfas unidimensionales mediante sus singularidades usando
la cohomología de haces asociadas a las foliaciones holomorfas. El trabajo está
basado en la investigación desarrollada por Xavier Gómez-Mont y George Kempf
en [GMK89].
A one-dimensional algebraic foliation Fα is generated by a meromorphic vector eld α ∈ H0(Pn,ΘPn(1 − d)), where d > 1 on the complex projective space Pn. In this work we will study how to determine one-dimensional holomorphic foliations through their singularities using the cohomology of sheaves associated with holomorphic foliations. This work is based on the research developed by Xavier Gómez-Mont and George Kempf in [GMK89].
A one-dimensional algebraic foliation Fα is generated by a meromorphic vector eld α ∈ H0(Pn,ΘPn(1 − d)), where d > 1 on the complex projective space Pn. In this work we will study how to determine one-dimensional holomorphic foliations through their singularities using the cohomology of sheaves associated with holomorphic foliations. This work is based on the research developed by Xavier Gómez-Mont and George Kempf in [GMK89].
Description
Keywords
Foliaciones (Matemáticas), Geometría algebraica, Singularidades (Matemáticas)
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess