Foliaciones algebraicas unidimensionales determinadas únicamente por sus singularidades
Date
2024-03-08
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Abstract
Una foliación algebraica unidimensional Fα es aquella que es generada por un
campo vectorial meromorfo α ∈ H0(Pn,ΘPn(1 − d)), donde d > 1 sobre el
espacio proyectivo complejo Pn. En este trabajo estudiaremos cómo determinar
las foliaciones holomorfas unidimensionales mediante sus singularidades usando
la cohomología de haces asociadas a las foliaciones holomorfas. El trabajo está
basado en la investigación desarrollada por Xavier Gómez-Mont y George Kempf
en [GMK89].
A one-dimensional algebraic foliation Fα is generated by a meromorphic vector eld α ∈ H0(Pn,ΘPn(1 − d)), where d > 1 on the complex projective space Pn. In this work we will study how to determine one-dimensional holomorphic foliations through their singularities using the cohomology of sheaves associated with holomorphic foliations. This work is based on the research developed by Xavier Gómez-Mont and George Kempf in [GMK89].
A one-dimensional algebraic foliation Fα is generated by a meromorphic vector eld α ∈ H0(Pn,ΘPn(1 − d)), where d > 1 on the complex projective space Pn. In this work we will study how to determine one-dimensional holomorphic foliations through their singularities using the cohomology of sheaves associated with holomorphic foliations. This work is based on the research developed by Xavier Gómez-Mont and George Kempf in [GMK89].
Description
Keywords
Foliaciones (Matemáticas), Geometría algebraica, Singularidades (Matemáticas)
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess