Experimental design of classificartion models: an application locomotion tasks of transtibial protheses
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Resumen
Las personas con amputaciones en las extremidades inferiores suelen depender de prótesis pasivas, lo que provoca una marcha asimétrica y un mayor gasto energético. Por ello, es importante desarrollar prótesis activas con sistemas de control eficaces que mejoren su calidad de vida. Esta tesis presenta un enfoque basado en aprendizaje automático para clasificar cinco tareas de locomoción diferentes: caminar a nivel del suelo, subir y bajar rampas, y subir y bajar escaleras. El conjunto de datos incluye señales de EMG e IMU fusionadas de 20 participantes no amputados y 5 participantes con amputación transtibial. Se evaluaron dos modelos de clasificación, Máquina de Vectores de Soporte (SVM) y Memoria a Largo Plazo y Corto Plazo (LSTM), en cuatro conjuntos de experimentos diferentes, centrándose en el rendimiento, las capacidades de generalización y la implementación en tiempo real. Los resultados demuestran que los modelos LSTM, junto con su técnica de adaptación de dominio mediante aprendizaje de transferencia, presentaron mayor robustez y generalización entre poblaciones que los modelos SVM en métricas de precisión, exactitud y F1-score. En una evaluación entre sujetos, el modelo LSTM, tras aplicar la técnica de adaptación de dominio, alcanzó un F1-score del 90.36%, en comparación con el 68.52% obtenido por el modelo SVM. Además, la latencia promedio de clasificación de los modelos SVM y LSTM fue de 16.46 ms y 34.23 ms, respectivamente, dentro de límites aceptables para aplicaciones en tiempo real.
Lower limb amputees often rely on passive prostheses, leading to asymmetric gait and increased energy expenditure. Therefore, it is important to develop active prostheses with effective control systems to improve their quality of life. This thesis introduces a machine learning-based approach to classify five distinct locomotion tasks: ground-level walking, ramp ascent/descent, and stairs ascent/descent. The dataset includes fused EMG and IMU signals from 20 non-amputated and 5 transtibial amputated participants. Two classification models, Support Vector Machine (SVM) and Long Short-Term Memory (LSTM), were evaluated in four different sets of experiments, focusing on performance, generalization capabilities, and real-time implementation. Results show that LSTM models, alongside their domain adaptation technique transfer learning, demonstrated greater robustness and inter-population generalizability than SVM models in accuracy, precision, and F1-score metrics. In a cross-subject evaluation, LSTM, after applying the domain adaptation technique, achieved an F1-score of 90.36% compared to the 68.52% achieved by the SVM model. Additionally, the average classification latency for SVM and LSTM models was 16.46 ms and 34.23 ms, respectively, within acceptable limits for real-time applications.
Lower limb amputees often rely on passive prostheses, leading to asymmetric gait and increased energy expenditure. Therefore, it is important to develop active prostheses with effective control systems to improve their quality of life. This thesis introduces a machine learning-based approach to classify five distinct locomotion tasks: ground-level walking, ramp ascent/descent, and stairs ascent/descent. The dataset includes fused EMG and IMU signals from 20 non-amputated and 5 transtibial amputated participants. Two classification models, Support Vector Machine (SVM) and Long Short-Term Memory (LSTM), were evaluated in four different sets of experiments, focusing on performance, generalization capabilities, and real-time implementation. Results show that LSTM models, alongside their domain adaptation technique transfer learning, demonstrated greater robustness and inter-population generalizability than SVM models in accuracy, precision, and F1-score metrics. In a cross-subject evaluation, LSTM, after applying the domain adaptation technique, achieved an F1-score of 90.36% compared to the 68.52% achieved by the SVM model. Additionally, the average classification latency for SVM and LSTM models was 16.46 ms and 34.23 ms, respectively, within acceptable limits for real-time applications.
Descripción
Palabras clave
Prótesis de piernas, Marcha en seres humanos, Aparatos ortopédicos, Prótesis--Diseño electrónico