Diseño de un convertidor bidireccional y aislado AC/DC trifásico de una sola etapa de conversión tipo DABRS para aplicaciones de electromovilidad
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Abstract
La electromovilidad se está consolidando como una solución clave para enfrentar los
desafíos ambientales y energéticos a nivel mundial, impulsando una transición hacia
un transporte más sostenible. En este contexto, los cargadores de vehículos eléctricos
desempeñan un papel crucial, siendo el convertidor electrónico responsable de la
interacción entre la red eléctrica y la batería. Tradicionalmente, se utilizan
convertidores de dos etapas, los cuales presentan diversas desventajas, como baja
eficiencia, un tamaño voluminoso, problemas de disipación de calor y limitaciones en
la inyección de energía reactiva, tolerancia a desequilibrios y bidireccionalidad.
Esta tesis se centra en el desarrollo de una estrategia de modulación y control para un
convertidor de una sola etapa de cuatro puentes activos resonante serie (QABRS), que
ofrece beneficios significativos en términos de menor volumen, mayor eficiencia y
durabilidad en comparación con los convertidores de dos etapas. La modulación
propuesta regula las tensiones de la red utilizando la relación de trabajo (DR), mientras
que la tensión de la batería se ajusta mediante un desplazamiento de fase (PS)
combinado con DR. El DR en la batería se usa exclusivamente en la inyección de
energía reactiva. Además, los ángulos DR en la red controlan la forma sinusoidal de
las corrientes de la red mediante controladores proporcionales integradores-resonantes
(PIR) conectados en cascada a un filtro de paso bajo de segundo orden y un
amortiguamiento activo. Los resultados experimentales de un prototipo de 1,5 kW
evidencian una alta eficiencia del 96,4 %, así como una capacidad de transferencia de
potencia activa y reactiva bidireccional, con una THD del 1,1 %. Estos hallazgos
destacan que el convertidor QABRS de una sola etapa propuesto es una alternativa
ideal para los cargadores de vehículos eléctricos bidireccionales (BEVC), subrayando
su potencial para mejorar el rendimiento y la sostenibilidad de los sistemas de carga
de vehículos eléctricos.
Electromobility is emerging as a key solution to address global environmental and energy challenges, driving a transition towards more sustainable transportation. In this context, electric vehicle chargers play a crucial role, with the electronic converter responsible for the interaction between the electrical grid and the battery. Traditionally, two-stage converters have been used, which present several disadvantages, such as low efficiency, bulkiness, heat dissipation issues, and limitations in reactive power injection, tolerance to imbalances, and bidirectionality. This thesis focuses on the development of a modulation and control strategy for a single-stage four active bridge resonant series (QABRS) converter, which offers significant benefits in terms of reduced size, higher efficiency, and durability compared to two-stage converters. The proposed modulation regulates the grid voltages using the duty ratio (DR), while the battery voltage is adjusted through a phase shift (PS) combined with DR. The DR for the battery is used exclusively for reactive power injection. Additionally, the DR angles in the grid control the sinusoidal shape of the grid currents through proportional-integral-resonant (PIR) controllers connected in cascade to a second-order low-pass filter and an active damping. Experimental results from a 1.5 kW prototype demonstrate a high efficiency of 96.4%, as well as bidirectional active and reactive power transfer capability, with a THD of 1.1%. These findings highlight that the proposed single-stage QABRS converter is an ideal alternative for bidirectional electric vehicle chargers (BEVC), underscoring its potential to enhance the performance and sustainability of electric vehicle charging systems.
Electromobility is emerging as a key solution to address global environmental and energy challenges, driving a transition towards more sustainable transportation. In this context, electric vehicle chargers play a crucial role, with the electronic converter responsible for the interaction between the electrical grid and the battery. Traditionally, two-stage converters have been used, which present several disadvantages, such as low efficiency, bulkiness, heat dissipation issues, and limitations in reactive power injection, tolerance to imbalances, and bidirectionality. This thesis focuses on the development of a modulation and control strategy for a single-stage four active bridge resonant series (QABRS) converter, which offers significant benefits in terms of reduced size, higher efficiency, and durability compared to two-stage converters. The proposed modulation regulates the grid voltages using the duty ratio (DR), while the battery voltage is adjusted through a phase shift (PS) combined with DR. The DR for the battery is used exclusively for reactive power injection. Additionally, the DR angles in the grid control the sinusoidal shape of the grid currents through proportional-integral-resonant (PIR) controllers connected in cascade to a second-order low-pass filter and an active damping. Experimental results from a 1.5 kW prototype demonstrate a high efficiency of 96.4%, as well as bidirectional active and reactive power transfer capability, with a THD of 1.1%. These findings highlight that the proposed single-stage QABRS converter is an ideal alternative for bidirectional electric vehicle chargers (BEVC), underscoring its potential to enhance the performance and sustainability of electric vehicle charging systems.
Description
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/embargoedAccess