Análisis y propuesta de mejora para incrementar la velocidad promedio de camiones de carga en pendiente positiva
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Resumen
Este estudio presenta un enfoque basado en datos para mejorar la velocidad promedio de
los camiones de acarreo en una operación a cielo abierto. La investigación se llevó a cabo en
una mina de cobre ubicada en una zona de gran altitud en el norte de Chile, donde se analizan
los eventos que pueden ocasionar fallas mecánicas que puedan reducir el desempeño de los
camiones autónomos cuyos componentes son monitoreados mediante el sistema VIMS. Para
procesar esta información se desarrolló una metodología estructurada para extraer, procesar y
clasificar los eventos de reducción de potencia del motor, correlacionándolos con los perfiles
del terreno y el desempeño operativo. A través de rutinas programadas de procesamiento de
datos y scripts en Python, se logró identificar en tiempo real las restricciones críticas,
permitiendo intervenciones específicas.
El análisis reveló que solo el 10 % de los eventos de reducción de potencia ocurrieron mientras
los camiones estaban vacíos, concentrándose la mayoría en condiciones de carga,
especialmente en pendientes ascendentes. Las métricas temporales indicaron que los camiones
cargados bajo reducción de potencia generaron eventos bunching o de agrupamiento de los
camiones reduciendo significativamente la velocidad promedio. Se establecieron métricas con
distintos intervalos los cuales sirvieron para implementar controles operativos basados en
umbrales de severidad y duración, lo que resultó en una mejora medible en el rendimiento.
Como resultado, la velocidad promedio de los camiones cargados aumentó de 16 km/h en 2024
a 19 km/h en 2025, superando el objetivo establecido de 18 km/h. Además, se observó una
disminución en la dispersión de los datos, lo que indica una mayor consistencia y resiliencia
ante condiciones adversas como las lluvias estacionales. Los hallazgos demuestran que la
integración de flujos de trabajo automatizados con estrategias operativas específicas puede
mejorar significativamente la eficiencia en las operaciones de acarreo.
This study presents a data-driven approach aimed at improving the average speed of haul trucks in an open-pit mining operation. The research was conducted at a high-altitude copper mine located in northern Chile, where events that may lead to mechanical failures and reduce the performance of autonomous trucks are analyzed. These trucks’ components are monitored through the VIMS system. To process this information, a structured methodology was developed to extract, process, and classify engine derate events, correlating them with terrain profiles and operational performance. Through scheduled data processing routines and Python scripts, it was possible to identify critical restrictions in real time, enabling targeted interventions. The analysis revealed that only 10% of engine derate events occurred while trucks were empty, with the majority concentrated under loaded conditions, particularly on uphill grades. Timebased metrics indicated that loaded trucks experiencing engine derate events generated bunching effects, significantly reducing average speed. Metrics were established across various intervals, which served to implement operational controls based on severity and duration thresholds, resulting in measurable performance improvements. As a result, the average speed of loaded trucks increased from 16 km/h in 2024 to 19 km/h in 2025, surpassing the established target of 18 km/h. Additionally, a reduction in data dispersion was observed, indicating greater consistency and resilience under adverse conditions such as seasonal rainfall. The findings demonstrate that integrating automated workflows with targeted operational strategies can significantly enhance haulage efficiency
This study presents a data-driven approach aimed at improving the average speed of haul trucks in an open-pit mining operation. The research was conducted at a high-altitude copper mine located in northern Chile, where events that may lead to mechanical failures and reduce the performance of autonomous trucks are analyzed. These trucks’ components are monitored through the VIMS system. To process this information, a structured methodology was developed to extract, process, and classify engine derate events, correlating them with terrain profiles and operational performance. Through scheduled data processing routines and Python scripts, it was possible to identify critical restrictions in real time, enabling targeted interventions. The analysis revealed that only 10% of engine derate events occurred while trucks were empty, with the majority concentrated under loaded conditions, particularly on uphill grades. Timebased metrics indicated that loaded trucks experiencing engine derate events generated bunching effects, significantly reducing average speed. Metrics were established across various intervals, which served to implement operational controls based on severity and duration thresholds, resulting in measurable performance improvements. As a result, the average speed of loaded trucks increased from 16 km/h in 2024 to 19 km/h in 2025, surpassing the established target of 18 km/h. Additionally, a reduction in data dispersion was observed, indicating greater consistency and resilience under adverse conditions such as seasonal rainfall. The findings demonstrate that integrating automated workflows with targeted operational strategies can significantly enhance haulage efficiency
Descripción
Palabras clave
Transporte en camiones, Velocidad, Minas de cobre--Chile