Raíces p-ádicas de la unidad

Thumbnail Image

Date

2015-11-23

Journal Title

Journal ISSN

Volume Title

Publisher

Pontificia Universidad Católica del Perú

Abstract

El tema de la presente tesis es el estudio de la ecuación x n − 1 = 0 en los números p-ádicos. Para ello la primera tarea es factorizar f(x) = x n − 1 a como de lugar en producto de irreducibles. Llegado a esa instancia, la idea es conseguir una extensión que nos permita descomponer completamente el polinomio f(x) y mostrar el comportamiento algebraico de las raíces. En los p-ádicos, ello se logra una vez introducidos los conceptos de índice de ramificación y grado de clases residuales. Empezamos esta tesis con un repaso de las extensiones ciclotómicas sobre Q en el Capítulo 1. Estas resultan de adjuntar una raíz primitiva de la unidad a ´ Q, generando así una extensión que resulta ser de Galois. Además, dado que los enteros p-ádicos también poseen una buena reducción módulo el primo p de preferencia, es preciso recordar algunas propiedades de los cuerpos finitos. Este repaso nos permitirá realizar un correcto manejo del grado de clases residuales y índice de ramificación, conceptos estrechamente relacionadas con el grado de la extensión. A partir de allí, en el Capítulo 3 concentramos nuestra atención en los números p-ádicos. Nos valdremos de algunos resultados expuestos en la tesis de maestría de Jos´e Condori [2], sobre todo en lo referente a las propiedades elementales de los números p-ádicos. Como caso especial estudiaremos las raíces p-ádicas de la unidad en Qp y también mostraremos las extensiones cuadráticas que se pueden construir. Es bien sabido que hallar una extensión cuadrática equivale a resolver la ecuación x 2 − a = 0 con a ∈ Qp. En el Capítulo 4 completamos el estudio de las propiedades algebraicas de las 1 raíces p-ádicas de la unidad y las separamos en dos subgrupos µ(p)(K) y µ(p∞)(K), los mismos que son las raíces de orden coprimo con p y raíces de orden una potencia de un primo. Por muy simple que parezca, esta agrupación de las raíces nos permitirá una clasificación de ciertas extensiones p-ádicas. Finalmente, es grato resaltar al Doctor Alfredo Poirier por su paciencia en la asesoría brindada para la elaboración de esta tesis.

Description

Keywords

Funciones algebráicas, Teoría de los números, Números p-ádicos

Citation

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess