Raíces p-ádicas de la unidad
Files
Date
2015-11-23
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Abstract
El tema de la presente tesis es el estudio de la ecuación x n − 1 = 0 en los números p-ádicos. Para ello la primera tarea es factorizar f(x) = x n − 1 a como de lugar en producto de irreducibles. Llegado a esa instancia, la idea es conseguir una extensión que nos permita descomponer completamente el polinomio f(x) y mostrar el comportamiento algebraico de las raíces. En los p-ádicos, ello se logra una vez introducidos los conceptos de índice de ramificación y grado de clases residuales. Empezamos esta tesis con un repaso de las extensiones ciclotómicas sobre Q en el Capítulo 1. Estas resultan de adjuntar una raíz primitiva de la unidad a ´ Q, generando así una extensión que resulta ser de Galois. Además, dado que los enteros p-ádicos también poseen una buena reducción módulo el primo p de preferencia, es preciso recordar algunas propiedades de los cuerpos finitos. Este repaso nos permitirá realizar un correcto manejo del grado de clases residuales y índice de ramificación, conceptos estrechamente relacionadas con el grado de la extensión. A partir de allí, en el Capítulo 3 concentramos nuestra atención en los números p-ádicos. Nos valdremos de algunos resultados expuestos en la tesis de maestría de Jos´e Condori [2], sobre todo en lo referente a las propiedades elementales de los números p-ádicos. Como caso especial estudiaremos las raíces p-ádicas de la unidad en Qp y también mostraremos las extensiones cuadráticas que se pueden construir. Es bien sabido que hallar una extensión cuadrática equivale a resolver la ecuación x 2 − a = 0 con a ∈ Qp. En el Capítulo 4 completamos el estudio de las propiedades algebraicas de las 1 raíces p-ádicas de la unidad y las separamos en dos subgrupos µ(p)(K) y µ(p∞)(K), los mismos que son las raíces de orden coprimo con p y raíces de orden una potencia de un primo. Por muy simple que parezca, esta agrupación de las raíces nos permitirá una clasificación de ciertas extensiones p-ádicas. Finalmente, es grato resaltar al Doctor Alfredo Poirier por su paciencia en la asesoría brindada para la elaboración de esta tesis.
Description
Keywords
Funciones algebráicas, Teoría de los números, Números p-ádicos
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess