Integración de parámetros hidrobiológicos e imágenes satelitales para la caracterización de cuerpos de agua en La Pampa - Madre de Dios
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Resumen
El sector de La Pampa, en Madre de Dios, Perú, enfrenta desafíos sociales y ambientales por la
minería artesanal aluvial a pequeña escala (MAPE). Esta actividad genera cuerpos de agua en zonas
deforestadas, que con el tiempo son colonizados por biota local y, en ocasiones, aprovechados
por la población. Evaluar su conservación es clave para entender sus servicios ecosistémicos. Esta
investigación propuso un marco metodológico para caracterizar estos cuerpos de agua, integrando
mediciones de calidad del agua con un vehículo de superficie no tripulado (USV) e información
satelital. Se midieron parámetros como temperatura, pH, conductividad, turbidez, salinidad, potencial
de reducción-oxidación y clorofila-a. Luego, se segmentaron cuerpos de agua con imágenes
Sentinel-2 y NDWI. Además, se desarrolló un modelo de predicción de clorofila-a basado en NDCI.
El marco se aplicó satisfactoriamente a 13 cuerpos de agua medidos en mayo y noviembre
de 2022. Los cuerpos visitados por el USV cumplen con los Estándares de Calidad Ambiental
para la mayoría de los parámetros medidos. Además, se halló una correlación significativa al 90%
de confianza entre clorofila-a y NDCI, permitiendo estimaciones preliminares. No obstante, para
evaluar mejor esta relación y mejorar la precisión del modelo, es necesario aumentar el número
de muestras. Las predicciones sobre los 915 cuerpos de agua detectados indican bajos niveles de
clorofila-a, sugiriendo bajo potencial de eutrofización, aunque estudios adicionales sobre contaminantes
como metales pesados son necesarios. Estos hallazgos refuerzan la utilidad del marco
metodológico para evaluar cuerpos de agua en paisajes afectados por la MAPE y otros entornos
alterados. Su aplicación podría contribuir a políticas ambientales y replicarse en regiones similares.
The La Pampa region, in Madre de Dios, Peru, faces social and environmental challenges due to Artisanal and Small-Scale Gold Mining (ASGM). This activity creates mining ponds in deforested areas, which over time are colonized by local biota and, in some cases, used by the local population. Assessing their conservation status is key to understanding their ecosystem services. This research proposed a methodological framework to characterize these mining ponds by integrating water quality measurements using an unmanned surface vehicle (USV) and remote sensing data. Parameters such as temperature, pH, conductivity, turbidity, salinity, redox potential, and chlorophyll-a (chl-a) were measured. Then, mining ponds were segmented using Sentinel-2 images and the NDWI spectral index. Additionally, a chlorophyll-a prediction model was developed based on NDCI. The framework was successfully applied to 13 mining ponds measured in May and November 2022. The mining ponds surveyed with the USV meet Peruvian Environmental Quality Standards for most measured parameters. Additionally, a significant correlation was found between chlorophyll-a and NDCI at a 90% confidence level, supporting its usefulness for preliminary estimates. However, to better assess this relationship and improve the model’s accuracy, increasing the number of samples is necessary. Predictions for the 915 detected mining ponds indicate low chl-a values, suggesting a low potential for eutrophication, although further studies on contaminants such as heavy metals are needed. These findings reinforce the usefulness of the methodological framework for assessing mining ponds in landscapes affected by MAPE and other altered environments. Its application could contribute to environmental policies and be replicated in similar regions. Keywords: remote sensing, water quality, unmanned surface vehicle, mining ponds, chlorophylla
The La Pampa region, in Madre de Dios, Peru, faces social and environmental challenges due to Artisanal and Small-Scale Gold Mining (ASGM). This activity creates mining ponds in deforested areas, which over time are colonized by local biota and, in some cases, used by the local population. Assessing their conservation status is key to understanding their ecosystem services. This research proposed a methodological framework to characterize these mining ponds by integrating water quality measurements using an unmanned surface vehicle (USV) and remote sensing data. Parameters such as temperature, pH, conductivity, turbidity, salinity, redox potential, and chlorophyll-a (chl-a) were measured. Then, mining ponds were segmented using Sentinel-2 images and the NDWI spectral index. Additionally, a chlorophyll-a prediction model was developed based on NDCI. The framework was successfully applied to 13 mining ponds measured in May and November 2022. The mining ponds surveyed with the USV meet Peruvian Environmental Quality Standards for most measured parameters. Additionally, a significant correlation was found between chlorophyll-a and NDCI at a 90% confidence level, supporting its usefulness for preliminary estimates. However, to better assess this relationship and improve the model’s accuracy, increasing the number of samples is necessary. Predictions for the 915 detected mining ponds indicate low chl-a values, suggesting a low potential for eutrophication, although further studies on contaminants such as heavy metals are needed. These findings reinforce the usefulness of the methodological framework for assessing mining ponds in landscapes affected by MAPE and other altered environments. Its application could contribute to environmental policies and be replicated in similar regions. Keywords: remote sensing, water quality, unmanned surface vehicle, mining ponds, chlorophylla
Descripción
Palabras clave
Hidrología--Predicción, Agua--Control de calidad--Madre de Dios, Vehículos--Control automático, Percepción remota
Citación
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto donde se indique lo contrario, la licencia de este ítem se describe como info:eu-repo/semantics/embargoedAccess
