Regresión cuantílica binaria: un enfoque bayesiano basado en la distribución asimétrica de Laplace
Date
2024-02-15
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Abstract
La regresión cuantílica es una técnica estadística que permite analizar la relación entre variables
en distintos cuantiles de la distribución de la variable respuesta. No obstante, su
aplicación en variables respuesta binaria puede contraintuitivo, pues la definición tradicional
de cuantiles se conceptualiza para variables continuas y no tienen una interpretación directa
en una variable binaria. A pesar de que una variable de respuesta binaria sólo toma dos
valores y no permite una definición tradicional de cuantiles, es posible extender la regresión
cuantílica para modelar los cuantiles de la variable latente subyacente a la variable de respuesta
binaria. Esta variable latente es continua y permite aplicar la regresión cuantílica en
contextos donde la variable de respuesta sea binaria.
En este estudio, adoptamos un enfoque bayesiano para la regresión cuantílica binarios basado
en la distribución asimétrica de Laplace (ALD); aplicaremos el modelo en un conjunto de datos
correspondiente a resultados de descarte de pruebas COVID-19 en pacientes oncológicos
y estimaremos los coeficientes de la regresión mediante el paquete bayesQR desarrollado en R.
Quantile regression is a statistical technique that allows for the analysis of relationships between variables across different quantiles of the response variable’s distribution. However, its application to binary response variables can be counterintuitive, as the traditional definition of quantiles is conceptualized for continuous variables and does not have a direct interpretation in a binary variable. Although a binary response variable only takes two values and does not allow for a traditional definition of quantiles, it is possible to extend quantile regression to model the quantiles of the latent variable underlying the binary response variable. This latent variable is continuous and enables the application of quantile regression in contexts where the response variable is binary. In this study, we adopt a Bayesian approach to binary quantile regression based on the Asymmetric Laplace Distribution (ALD); we will apply the model to a dataset comprising discarded COVID-19 test results in oncology patients and estimate the regression coefficients using the bayesQR package developed in R.
Quantile regression is a statistical technique that allows for the analysis of relationships between variables across different quantiles of the response variable’s distribution. However, its application to binary response variables can be counterintuitive, as the traditional definition of quantiles is conceptualized for continuous variables and does not have a direct interpretation in a binary variable. Although a binary response variable only takes two values and does not allow for a traditional definition of quantiles, it is possible to extend quantile regression to model the quantiles of the latent variable underlying the binary response variable. This latent variable is continuous and enables the application of quantile regression in contexts where the response variable is binary. In this study, we adopt a Bayesian approach to binary quantile regression based on the Asymmetric Laplace Distribution (ALD); we will apply the model to a dataset comprising discarded COVID-19 test results in oncology patients and estimate the regression coefficients using the bayesQR package developed in R.
Description
Keywords
Regresión cuantílica, Estadística bayesiana, Distribución (Teoría de la probabilidad), COVID-19 (Enfermedad)--Diagnóstico--Perú, Cáncer--Pacientes--Perú