Diseño e implementación de las funciones de agarre y levante en un brazo Kinova usando señales EEG y Deep Learning
Files
Date
2020-09-24
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Abstract
Miles de personas en el mundo son afectadas por enfermedades causantes de parálisis tales
como esclerosis lateral amiotrófica, lesiones en la médula espinal y distrofia muscular. En los
últimos años, investigadores han buscado desarrollar soluciones tecnológicas para asistir a
estos pacientes. En el 2012, una mujer con tetraplejia, causada por un paro cerebral, fue capaz
de acercar una botella a su boca y beber de ella, utilizando señales EEG invasivas [1].
Recientemente, en el 2016, ahora mediante sensores EEG no invasivos, se realizaron pruebas
en 13 sujetos sanos para mover un brazo robot en dos dimensiones [2]. Buscando colaborar
en el desarrollo de robots asistenciales, el presente trabajo propone el diseño e
implementación de las funciones de 'agarre' y 'levante' en el brazo robot Kinova, donde las
señales de activación provendrán de señales EEG y el algoritmo de traducción estará basados
en modelos de deep learning.
Los modelos de deep learning mencionados serán basados en la solución propuesta por Alex
Barachant y Rafael Cycon para la clasificación de señales EEG [3]. El dataset que se utilizará
para el entrenamiento se toma del repositorio WAY-EEG-GAL financiado por la unión
europea [4]. A pesar de que las señales EEG corresponden a movimientos físicos reales, los
cuales no pueden ser realizados por los pacientes con las enfermedades antes mencionadas,
este trabajo busca brindar un aporte a la literatura médica e ingenieril y al avance de las
aplicaciones de interfaz cerebro-computador. Adicionalmente, se busca proponer el método
para evaluar el desempeño en una prueba experimental del algoritmo referido, lo cual no se
ha abordado en la literatura presente hasta el momento.
Description
Keywords
Robots--Sistemas de control, Manipuladores (Mecanismos), Electroencefalografía
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess