Overlapping point cloud merge and surface reconstruction with parallel processing for real time application

Thumbnail Image

Date

2023-05-26

Journal Title

Journal ISSN

Volume Title

Publisher

Pontificia Universidad Católica del Perú

Abstract

Compañías mineras están en búsqueda constante de nuevas tecnologías para aumentar su productividad. Una de las tecnologías que les permite realizar la reconstrucción de la superficie sin poner en riesgo la vida de sus trabajadores es el uso de sensores LiDAR junto con plataformas móviles que les permiten rotar el sensor para realizar un escaneo completo de la estructura. Sin embargo, el procesamiento de los datos se realiza a través de ordenadores situados fuera de la mina, debido a su alto coste computacional, lo que se traduce en un alto coste de tiempo. En esta tesis presento como objetivo principal el diseño de un algoritmo paralelo para la fusión de nubes de puntos capturadas por un LiDAR y la reconstrucción de la superficie en tiempo real, con el fin de reducir el tiempo de procesado, teniendo en cuenta información a priori del patrón de barrido de los puntos. En la literatura se pueden encontrar algoritmos para la reducción de la densidad de puntos, sin embargo, en esta tesis, propongo la idea de suprimir estos puntos basándome en el principio de que la etapa de registro entre cada escaneo puede ser obtenida por un sistema de medición correctamente establecido, por lo tanto, no es necesario utilizar ningún algoritmo ICP. Además, a diferencia de los algoritmos genéricos de reconstrucción de superficies, propongo un nuevo algoritmo que utiliza la información a priori del sistema de escaneo que permite obtener la reconstrucción triangular en un tiempo menor al tiempo de escaneo del LiDAR. Este algoritmo se implementará en un ordenador desktop con el uso de GPUs proporcionadas por NVIDIA para evaluar su rendimiento y, también, se implementará en una Jetson Nano con datos de una mina socavón real. Finalmente, proporcionaré algunas recomendaciones y consideraciones a tener en cuenta en las etapas de evaluación del algoritmo secuencial, codificación del algoritmo paralelo e implementación en GPUs.
Mining companies are constantly searching for new technologies in order to increase their productivity. One of the technologies that allow them to perform surface reconstruction without risking the lives of their workers is the use of LiDAR sensors in conjunction with mobile platforms that allow them to rotate the sensor to perform a full scan of the structure. However, the data processing is done through computers located outside the mine, due to its high computational cost, resulting in a high cost of time. This thesis presents as principal objective the design of a parallel algorithm for the fusion of point clouds captured by a LiDAR and the surface reconstruction in real-time, in order to reduce the time processing, taking into account a priori information of the scanning pattern of the points. Algorithms for point density reduction can be found in the literature, however, in this thesis these points are suppressed based on the principle that the registration stage between each scan can be obtained by a measurement system properly stablished, therefore, it is not necessary to use any ICP algorithm. Also, unlike the generic surface reconstruction algorithms, a new algorithm that uses the a priori information of the scanning system is proposed and allows to obtain the triangular mesh in real-time in comparison to the LiDAR scanning time. This algorithm will be implemented in a desktop computer with the use of GPUs provided by NVIDIA to evaluate its performance and, also, will be implemented in a Jetson Nano with real data. Finally, some recommendations and considerations are provided to be taken into account in the stages of evaluation of the sequential algorithm, coding of the parallel algorithm and implementation on GPUs.

Description

Keywords

Sensores inteligentes, Algoritmos--Aplicaciones, Industria minera

Citation

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess