3D Reconstruction of Incomplete Archaeological Objects Using a Generative Adversarial Network

dc.contributor.advisorSipiran Mendoza, Iván Anselmo
dc.contributor.authorHermoza Aragonés, Renatoes_ES
dc.date.accessioned2018-07-09T14:29:22Zes_ES
dc.date.available2018-07-09T14:29:22Zes_ES
dc.date.created2018es_ES
dc.date.issued2018-07-09es_ES
dc.description.abstractWe introduce a data-driven approach to aid the repairing and conservation of archaeological objects: ORGAN, an object reconstruction generative adversarial network (GAN). By using an encoder-decoder 3D deep neural network on a GAN architecture, and combining two loss objectives: a completion loss and an Improved Wasserstein GAN loss, we can train a network to effectively predict the missing geometry of damaged objects. As archaeological objects can greatly differ between them, the network is conditioned on a variable, which can be a culture, a region or any metadata of the object. In our results, we show that our method can recover most of the information from damaged objects, even in cases where more than half of the voxels are missing, without producing many errors.es_ES
dc.description.uriTesises_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/12263
dc.language.isoenges_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPEes_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.subjectRedes neuronales (Computación)es_ES
dc.subjectInteligencia artificial--Aplicacioneses_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.02.00es_ES
dc.title3D Reconstruction of Incomplete Archaeological Objects Using a Generative Adversarial Networkes_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
renati.advisor.dni41861203
renati.discipline611087es_ES
renati.levelhttps://purl.org/pe-repo/renati/level#maestroes_ES
renati.typehttp://purl.org/pe-repo/renati/type#tesises_ES
thesis.degree.disciplineInformática con mención en Ciencias de la Computaciónes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Escuela de Posgradoes_ES
thesis.degree.levelMaestríaes_ES
thesis.degree.nameMaestro en Informática con mención en Ciencias de la Computaciónes_ES

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: