Mediciones interferométricas de la fase geométrica de fotones individuales
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Resumen
Cuando un sistema cuántico evoluciona de manera coherente, su función de onda adquiere una
fase (fase de Pancharatnam) compuesta por dos contribuciones: una dinámica, determinada por
el Hamiltoniano de la evolución y otra de carácter geométrico, determinada por la trayectoria del
estado en el espacio de Hilbert. Esta última se conoce como fase geométrica y no depende del
ritmo de evolución temporal ni del Hamiltoniano específico que genera la trayectoria, sino de la
forma de la trayectoria seguida. En sistemas de dos niveles como los qubits de polarización, esta
fase puede visualizarse en la esfera de Poincaré como proporcional al ángulo sólido encerrado
por una trayectoria cerrada del vector de estado al evolucionar. Su estudio resulta relevante no
solo por su interés teórico, sino también por su potencial aplicación en el diseño de operaciones
cuánticas robustas frente a ciertos tipos de errores, como los que produce la decoherencia. Con
el propósito de estudiar experimentalmente fases geométricas en qubits de polarización, esta
tesis presenta un interferómetro de transmisión con control de fase polarimétrico que opera con
fotones individuales. Este diseño evita el uso de elementos reflectivos y resulta compatible con
configuraciones ópticas requeridas para trabajar con fuentes de fotones individuales. Esta tesis
contiene dos partes principales. La primera parte del trabajo se centró en la medición interferométrica
de la fase de Pancharatnam adquirida por estados de polarización sometidos a transformaciones
del grupo SU(2). Para ello, se desarrolló un esquema experimental que permite
implementar dichas transformaciones mediante un conjunto adicional de láminas retardadoras
en el interferómetro de transmisión propuesto. Se reconstruyeron patrones de interferencia para
las transformaciones implementadas. La fase de Pancharatnam se determinó a partir del análisis
del desplazamiento de los patrones de interferencia respecto a un patrón de referencia. En la segunda
parte, se introdujo una transformación del tipo U(1) para anular la componente dinámica
de la fase de Pancharatnam. Se mostraron los cálculos teóricos necesarios para seleccionar los
ángulos de las láminas retardadoras que permitieran dicha anulación. Una vez implementada
la configuración correspondiente, se realizó la medición interferométrica de la fase geométrica
asociada a trayectorias cerradas no geodésicas en la esfera de Poincaré. Como resultado, este
trabajo presenta un procedimiento experimental para la medición interferométrica de fases
geométricas en el régimen de fotones individuales.
When a quantum system evolves coherently, its wave function acquires a phase (Pancharatnam phase) composed of two contributions: a dynamic one, determined by the Hamiltonian of the evolution, and another of geometrical character, determined by the trajectory of the state in Hilbert space. The latter is known as geometric phase and does not depend on the rate of time evolution nor on the specific Hamiltonian that generates the trajectory, but on the shape of the trajectory followed. In two-level systems such as polarization qubits, this phase can be visualized on the Poincaré sphere as proportional to the solid angle enclosed by a closed trajectory of the state vector as it evolves. Its study is relevant not only for its theoretical interest but also for its potential application in the design of quantum operations that are robust to certain types of errors, such as those produced by decoherence. In order to experimentally study geometric phases with polarization qubits, this thesis presents a transmission interferometer with polarimetric phase control that operates with single photons. This design avoids the use of reflective elements and is compatible with optical configurations required to work with single photon sources. This thesis contains two main parts. The first part of the work focused on the interferometric measurement of the Pancharatnam phase acquired by polarization states undergoing SU(2) transformations. For this purpose, an experimental scheme was developed to implement such transformations by means of an additional set of retarders in the proposed transmission interferometer. Interference patterns were reconstructed for the implemented transformations. The Pancharatnam phase was determined from the analysis of the shift of the interference patterns with respect to a reference pattern. In the second part, a U(1) transformation was introduced to nullify the dynamic component of the Pancharatnam phase. The theoretical calculations necessary to select the retarder angles that would allow such cancellation were shown. Once the corresponding configuration was implemented, the interferometric measurement of the geometric phase associated with non-geodesic closed trajectories on the Poincaré sphere was performed. As a result, this work presents an experimental procedure for the interferometric measurement of geometric phases in the single-photon regime.
When a quantum system evolves coherently, its wave function acquires a phase (Pancharatnam phase) composed of two contributions: a dynamic one, determined by the Hamiltonian of the evolution, and another of geometrical character, determined by the trajectory of the state in Hilbert space. The latter is known as geometric phase and does not depend on the rate of time evolution nor on the specific Hamiltonian that generates the trajectory, but on the shape of the trajectory followed. In two-level systems such as polarization qubits, this phase can be visualized on the Poincaré sphere as proportional to the solid angle enclosed by a closed trajectory of the state vector as it evolves. Its study is relevant not only for its theoretical interest but also for its potential application in the design of quantum operations that are robust to certain types of errors, such as those produced by decoherence. In order to experimentally study geometric phases with polarization qubits, this thesis presents a transmission interferometer with polarimetric phase control that operates with single photons. This design avoids the use of reflective elements and is compatible with optical configurations required to work with single photon sources. This thesis contains two main parts. The first part of the work focused on the interferometric measurement of the Pancharatnam phase acquired by polarization states undergoing SU(2) transformations. For this purpose, an experimental scheme was developed to implement such transformations by means of an additional set of retarders in the proposed transmission interferometer. Interference patterns were reconstructed for the implemented transformations. The Pancharatnam phase was determined from the analysis of the shift of the interference patterns with respect to a reference pattern. In the second part, a U(1) transformation was introduced to nullify the dynamic component of the Pancharatnam phase. The theoretical calculations necessary to select the retarder angles that would allow such cancellation were shown. Once the corresponding configuration was implemented, the interferometric measurement of the geometric phase associated with non-geodesic closed trajectories on the Poincaré sphere was performed. As a result, this work presents an experimental procedure for the interferometric measurement of geometric phases in the single-photon regime.
Descripción
Palabras clave
Fotones, Fases geométricas cuánticas, Interferometría
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto donde se indique lo contrario, la licencia de este ítem se describe como info:eu-repo/semantics/openAccess
