Modelo por elementos finitos y optimización multiobjetivo de tanques de GLP reforzados con material compuesto de fibra tejida

Título de la revista

ISSN de la revista

Título del volumen

Editor

Pontificia Universidad Católica del Perú

Acceso al texto completo solo para la Comunidad PUCP

Resumen

El presente trabajo propone una solución técnica y sostenible para extender la vida útil de tanques metálicos de GLP que no superan la prueba hidrostática de presión. Se plantea el refuerzo del tanque mediante un recubrimiento externo de fibra de carbono tejida, aplicado por la técnica de bobinado. Para validar esta propuesta, se desarrolló un modelo analítico en MATLAB, un modelo numérico por elementos finitos en ANSYS y un estudio experimental con galgas extensiométricas. Además, se caracterizó la resistencia del laminado mediante ensayos de tracción (ASTM D638). La validación cruzada entre modelos mostró una desviación inferior al 4 %, confirmando la fidelidad del modelo digital. Posteriormente, se implementó una optimización multiobjetivo que evaluó 200 configuraciones de diseño. El diseño óptimo obtenido logra reducir la masa del refuerzo respecto a configuraciones convencionales y mantener los esfuerzos internos dentro de los límites del diseño original, con un factor de seguridad mayor a 1.4. La investigación demuestra que es posible reacondicionar tanques descartados con un desempeño estructural comparable al de un tanque nuevo, proponiendo una alternativa técnica viable, económica y ambientalmente favorable.
This study proposes a technical and sustainable solution to extend the service life of LPG steel cylinders that fail hydrostatic pressure tests. The proposed method involves reinforcing the tank with an external layer of woven carbon fiber, applied using the filament winding technique. To validate this approach, an analytical model was developed in MATLAB, a finite element model was built in ANSYS, and an experimental study using strain gauges was conducted. The tensile strength of the composite laminate was also characterized according to ASTM D638. Cross-validation among models revealed a deviation of less than 4%, confirming the accuracy of the digital simulation. Subsequently, a multi-objective optimization was carried out, evaluating 200 design configurations. The optimal design achieved a reduction in reinforcement mass compared to conventional setups while keeping internal stresses within the original material’s allowable limits, maintaining a safety factor above 1.4. The findings demonstrate that discarded LPG tanks can be structurally rehabilitated with a performance comparable to new ones, offering a technically viable, cost-effective, and environmentally favorable alternative.

Descripción

Palabras clave

Metal--Revestimientos, Tanques--Mantenimiento y reparación, Resistencia de materiales, Optimización matemática

Citación

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licencia Creative Commons

Excepto donde se indique lo contrario, la licencia de este ítem se describe como info:eu-repo/semantics/openAccess