Aproximación de Laplace de modelos geoestadísticos con distribución normal independiente y covarianza tapering
| dc.contributor.advisor | Quiroz Cornejo, Zaida Jesús | |
| dc.contributor.author | Plasencia Lapa, Yuri Vladimir | |
| dc.date.accessioned | 2025-12-16T20:45:31Z | |
| dc.date.available | 2025-12-16T20:45:31Z | |
| dc.date.created | 2024 | |
| dc.date.issued | 2025-12-16 | |
| dc.description.abstract | Los modelos geoestadísticos gaussianos son útiles cuando los datos siguen una distribución normal. Sin embargo, cuando la distribución de los datos es simétrica pero hay presencia de observaciones atípicas entonces se debe asumir una distribución simétrica con colas más pesadas. Por otro lado, en estos modelos geoestadísticos cuando se tienen muchos datos, el principal problema para la inferencia radica en la matriz de covarianza asociada al modelo. En este contexto, esta tesis se ha centrado en extender modelos geoestadísticos usando la distribución normal independiente a través de una función de covarianza tapering o reducida. La función de reducción en la covarianza permite que la matriz de covarianza sea dispersa, característica muy útil en bases de datos grandes. Para la estimación a través de inferencia clásica se propone usar la aproximación de Laplace, para ello se implementó la inferencia en C++ y R a través del Template Model Buider (TMB). Se realizaron estudios de simulación para demostrar la correcta implementación del modelo y las bondades del modelo propuesto. Finalmente, se aplica el modelo para estudiar la distribución espacial del material particulado en Estados Unidos, variable útil para evaluar el nivel de contaminación del aire. | |
| dc.description.abstract | Gaussian geostatistical models are useful when data follow a normal distribution. However, when the data distribution is symmetric but there are atypical observations, then it should be assumed a symmetric distribution with heavier tails. On the other hand, in these geostatistical models when there is a lot of data, the main problem for inference lies in the covariance matrix associated with the model. In this context, this thesis has focused on extending geostatistical models using the independent normal distribution through a covariance tapering function. The covariance tapering function allows the covariance matrix to be sparse, a very useful feature in large databases. For the estimation through classical inference, it is proposed to use the Laplace approximation, thus the inference was implemented in C++ and R through Template Model Builder (TMB). A simulation study was carried out in order to demonstrate the correct implementation as well as bene ts of the proposed model. Finally, the model is used to study the spatial distribution of particulate matter in the United States, a useful variable to evaluate the level of air pollution. | |
| dc.identifier.uri | http://hdl.handle.net/20.500.12404/32798 | |
| dc.language.iso | spa | |
| dc.publisher | Pontificia Universidad Católica del Perú | es_ES |
| dc.publisher.country | PE | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/2.5/pe/ | |
| dc.subject | Aproximaciones | |
| dc.subject | Teoría de las distribuciones (Análisis funcional) | |
| dc.subject | Análisis espacial (Estadística) | |
| dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#1.01.03 | |
| dc.title | Aproximación de Laplace de modelos geoestadísticos con distribución normal independiente y covarianza tapering | |
| dc.type | info:eu-repo/semantics/masterThesis | |
| renati.advisor.dni | 43704124 | |
| renati.advisor.orcid | https://orcid.org/0000-0003-3821-0815 | |
| renati.author.dni | 42177767 | |
| renati.discipline | 542037 | |
| renati.juror | De La Cruz Huayanay, Alex | |
| renati.juror | Quiroz Cornejo, Zaida Jesús | |
| renati.juror | Bayes Rodríguez, Cristian Luis | |
| renati.level | https://purl.org/pe-repo/renati/level#maestro | |
| renati.type | https://purl.org/pe-repo/renati/type#tesis | |
| thesis.degree.discipline | Estadística | es_ES |
| thesis.degree.grantor | Pontificia Universidad Católica del Perú. Escuela de Posgrado. | es_ES |
| thesis.degree.level | Maestría | es_ES |
| thesis.degree.name | Maestro en Estadística | es_ES |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: