El uso de aplicaciones de la Inteligencia Artificial Generativa en la enseñanza-aprendizaje de las Matemáticas a nivel universitario: aspectos favorables y desfavorables
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Resumen
El presente trabajo aborda el impacto pedagógico de la inteligencia artificial generativa
(IAG) en cursos universitarios de matemática. Su uso se ha extendido con rapidez
entre los estudiantes, lo que plantea preguntas urgentes sobre sus efectos en el
proceso de enseñanza-aprendizaje. El objetivo principal es analizar los aspectos
favorables y desfavorables de esta integración, considerando el contexto académico
y las prácticas docentes actuales. La metodología se basa en una revisión crítica de
24 investigaciones publicadas entre 2023 y 2025, seleccionadas en Scopus,
ScienceDirect, IEEE Xplore y Google Scholar. Los estudios incluidos presentan
enfoques teóricos, descriptivos, fenomenológicos, experimentales y empíricos, todos
centrados en el uso didáctico de la IAG en matemática universitaria. Los hallazgos
muestran que la IAG favorece la personalización del aprendizaje, estimula la
resolución de problemas y agiliza la retroalimentación. Sin embargo, también se
evidencian riesgos como la dependencia excesiva, la pérdida de autonomía intelectual
y la disminución de la fiabilidad en ciertos contenidos. A partir de estos hallazgos, se
propone reforzar el rol docente, revisar las políticas institucionales y promover
competencias digitales que orienten un uso pedagógico más ético y reflexivo.
This research explores the pedagogical impact of generative artificial intelligence (GAI) in university-level mathematics courses. As GAI becomes increasingly embedded in student learning practices, urgent questions arise about its role in shaping the teaching–learning process. The main objective is to analyze both the favorable and unfavorable aspects of GAI integration within higher education, emphasizing the need for pedagogical and institutional reflection. Methodologically, the study is based on a critical review of 24 research articles published between 2023 and 2025, selected from databases such as Scopus, ScienceDirect, IEEE Xplore, and Google Scholar. These sources present theoretical, descriptive, phenomenological, experimental, and empirical approaches, all focused on the educational use of GAI in mathematics. Findings suggest that GAI supports the personalization of learning, encourages problem-solving skills, and speeds up feedback mechanisms. However, risks are also identified, including technological dependence, decreased student autonomy, and issues with content reliability. In response, the study highlights the importance of active teaching mediation, institutional policies, and digital competencies that can guide GAI usage toward more ethical, critical, and effective educational practices.
This research explores the pedagogical impact of generative artificial intelligence (GAI) in university-level mathematics courses. As GAI becomes increasingly embedded in student learning practices, urgent questions arise about its role in shaping the teaching–learning process. The main objective is to analyze both the favorable and unfavorable aspects of GAI integration within higher education, emphasizing the need for pedagogical and institutional reflection. Methodologically, the study is based on a critical review of 24 research articles published between 2023 and 2025, selected from databases such as Scopus, ScienceDirect, IEEE Xplore, and Google Scholar. These sources present theoretical, descriptive, phenomenological, experimental, and empirical approaches, all focused on the educational use of GAI in mathematics. Findings suggest that GAI supports the personalization of learning, encourages problem-solving skills, and speeds up feedback mechanisms. However, risks are also identified, including technological dependence, decreased student autonomy, and issues with content reliability. In response, the study highlights the importance of active teaching mediation, institutional policies, and digital competencies that can guide GAI usage toward more ethical, critical, and effective educational practices.
Descripción
Palabras clave
Matemáticas--Estudio y enseñanza, Matemáticas--Enseñanza superior, Inteligencia artificial--Aplicaciones educativas
Citación
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto donde se indique lo contrario, la licencia de este ítem se describe como info:eu-repo/semantics/openAccess
