Optimización de la gestión comercial por medio de modelos analíticos

dc.contributor.advisorNegrón Naldos, Luis Alfredo
dc.contributor.authorZea Quispe, Mercy Saint
dc.contributor.authorAliaga Torpoco, Hirvin Jerson
dc.contributor.authorGáloc Vilca, Javier Eduardo
dc.contributor.authorSáenz Padilla, Steven Eduardo
dc.date.accessioned2025-09-25T17:42:42Z
dc.date.created2025-08
dc.description.abstractUna empresa con una trayectoria destacada en su sector tiene una oportunidad estratégica clave para optimizar su gestión comercial en los canales tradicionales. Actualmente, existe una limitación en la capacidad de su equipo de ventas para aprovechar al máximo los datos disponibles y personalizar la atención al cliente, lo que se debe, en parte, a la dependencia de procesos manuales. Esto implica que el equipo dedique un tiempo considerable a tareas como la elaboración de informes (alrededor de 200 horas mensuales), reduciendo el enfoque en la venta estratégica y la relación con el cliente. Esta tesis se enfocó en aprovechar esta situación como una oportunidad de mejora significativa mediante la implementación de modelos analíticos avanzados que respalden la toma de decisiones estratégicas. Las soluciones principales son: una segmentación profunda de clientes para entender y atender mejor sus necesidades y un modelo predictivo para sugerir el pedido ideal, buscando hacer el trabajo del equipo más inteligente y eficiente. La validación de esta propuesta se basó en un análisis detallado del contexto y la evaluación rigurosa de alternativas, respaldada por metodologías reconocidas. La implementación se diseñó para ejecutarse de manera progresiva: comenzó con un proyecto piloto destinado a validar su eficacia antes de escalarla a toda la organización. El impacto esperado es impulsar la eficiencia operativa y comercial, optimizar costos (como los relacionados con logística y mermas) y fomentar un crecimiento en ventas. Socialmente, se espera una mejora notable en el día a día del equipo de ventas, liberando tiempo para tareas de valor, y potenciar la experiencia y satisfacción del cliente a través de una atención más personalizada y efectiva. Esta iniciativa se alinea con los objetivos estratégicos de crecimiento de la empresa.
dc.description.abstractA company with a strong track record in its sector has a key strategic opportunity to optimize its commercial management in traditional sales channels. Currently, the sales team faces limitations in fully leveraging available data and personalizing customer service, partly due to a reliance on manual processes. This results in the team spending a significant amount of time on tasks such as report generation (approximately 200 hours per month), reducing their focus on strategic selling and customer relationships. This thesis proposes turning this situation into a significant improvement opportunity through the implementation of advanced analytical models. The main solutions include deep customer segmentation to better understand and meet their needs, and a predictive model to suggest the ideal order-aiming to make the team's work smarter and more efficient. The proposal is validated through a detailed analysis of the current context and a rigorous evaluation of alternatives, supported by recognized methodologies. The implementation was designed to be carried out progressively: it began with a pilot project aimed at validating its effectiveness before scaling it across the entire organization. The expected impact is to boost operational and commercial efficiency, optimize costs (such as those related to logistics and waste), and drive sales growth. On a social level, it is expected to significantly improve the day-to-day experience of the sales team by freeing up time for higher-value tasks, while enhancing customer experience and satisfaction through more personalized and effective service. This initiative aligns with the company’s strategic growth objectives.
dc.identifier.urihttp://hdl.handle.net/20.500.12404/31878
dc.language.isospa
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPE
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Peruen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.subjectGestión Comercial
dc.subjectGestión Comercial
dc.subjectControl de procesos--Mejoramiento
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#5.02.04
dc.titleOptimización de la gestión comercial por medio de modelos analíticos
dc.typeinfo:eu-repo/semantics/masterThesis
renati.advisor.dni10788917
renati.advisor.orcidhttps://orcid.org/0000-0003-1328-0323
renati.author.dni70687512
renati.author.dni72367747
renati.author.dni44114957
renati.author.dni44481653
renati.discipline612167
renati.jurorNegrón Naldos, Luis Alfredo
renati.jurorBazán Tejada, Carlos Armando
renati.jurorGarcía López, Yván Jesús
renati.levelhttp://purl.org/pe-repo/renati/level#maestro
renati.typehttps://purl.org/pe-repo/renati/type#tesis
thesis.degree.disciplineGerencia de Tecnologías de Informaciónes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. CENTRUMes_ES
thesis.degree.levelMaestríaes_ES
thesis.degree.nameMaestro en Gerencia de Tecnologías de Informaciónes_ES

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Optimización de la gestión comercial por medio de modelos analíticos.pdf
Tamaño:
1.33 MB
Formato:
Adobe Portable Document Format
Descripción:
Texto completo
Cargando...
Miniatura
Nombre:
Reporte Turnitin_Zea.pdf
Tamaño:
22.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Reporte de originalidad

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: