Espacios fibrados, clases características y el isomorfismo de Thom

dc.contributor.advisorFernández Pilco, Percy
dc.contributor.authorArroyo Flores, Merwil Lucianoes_ES
dc.date.accessioned2013-10-10T16:03:08Zes_ES
dc.date.available2013-10-10T16:03:08Zes_ES
dc.date.created2013es_ES
dc.date.issued2013-10-10es_ES
dc.description.abstractLa Topología Algebraica es una rama de las matemáticas, donde la idea fundamental es asociar objetos algebraicos a los espacios topológicos y/o variedades, de manera que la estructura asociada sea un invariante, en ese sentido estudiando las propiedades algebraicas del objeto asociado podemos extraer consecuencias sobre la geometría y la topología del espacio. La cohomología de Rham y la cohomología con soporte compacto, son los dos principales invariantes topológicos de una variedad C∞, en ambos casos son herramientas algebraicas, que se trata de cierta estructura algebraica extraída de una variedad diferenciable, permitirá distinguir si dos variedades son o no homeomorfas. El cálculo de los grupos de cohomología de una variedad no es tan fácil, con esa idea se introdujo una buena técnica como es la secuencia de Mayer Vietoris para ambos invariantes introducida por Leopoldo Vietoris(1850), esta técnica calcula grupos de cohomología de una variedad que es posible expresarla como la unión de dos conjuntos abiertos no necesariamente disjuntos, entonces así se puede determinar los grupos de cohomología de la variedad en términos de los grupos de cohomología de estos abiertos. Así mismo y con esa misma necesidad se obtuvo la Dualidad de Poincaré para una variedad orientable de dimensión, que establece el isomorfismo entre el grupo de cohomología de Rham y el dual de la cohomología con soporte compacto, éste isomorfismo es mucho más importante cuando la variedad orientable no es compacta. Con el propósito de seguir buscando más objetos algebraicos que permitan proporcionar más información geométrica y/o topológica del espacio se empieza estudiar la variedad producto, cuya generalización conduce a la variedad producto local en ese sentido se obtiene una nueva variedad a partir de otra(espacio base) llamado(Espacio Fibrado) donde su espacio total está formado por fibras(sub-variedades) en particular y en el que más trabajaremos es cuando las fibras sean espacios vectoriales a estos fibrados los llamaremos Fibrados Vectoriales ya teniendo un fibrado y la noción de paralelismo en el espacio ambiente R n se generaliza a espacios fibrados y se obtiene un operador algebraico llamada conexión, asociada a éste tenemos definida la curvatura. Este trabajo está dividido en cinco capítulos; el primer capítulo se hace una exposición ligera de la cohomología de Rham así como una exposición de la secuencia de Mayer Vietoris y lo más importante la Dualidad de Poincaré que son los pilares fundamentales en el éxito de este trabajo. En el segundo y tercer capítulo se hace un estudio de los espacios fibrados pero concentrándonos más en los fibrados vectoriales las operaciones entre ellos y la conexión y curvatura ´este ´último es la base fundamental para las clases características. En el capítulo cuatro empezamos a hablar de los polinomios invariantes que son una herramienta clásica que permite hacer un estudio detallado de las clases características principalmente en las Clases de Chern para fibrados vectoriales complejos la misma que se construye en base a la 2-forma de curvatura. Finalmente en el capítulo cinco se empieza trabajando una herramienta que permite calcular los grupos de cohomología de un espacio producto llamada la Fórmula de Künneth, posteriormente se construye un nuevo fibrado llamado el fibrado de esferas que se usará en poder probar el isomorfismo de Thom, además se define el índice de una sección y se concluye con el teorema generalizado de Gauss-Bonnet. El trabajo ha sido hecho en base a mucho esfuerzo, dedicación, y doy gracias a Dios por haberme guiado siempre y así poder lograr todas las metas trazadas . Agradezco anticipadamente a los lectores por las observaciones que tengan a bien formular.es_ES
dc.description.uriTesises_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/4815
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPEes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.subjectTopología algebraicaes_ES
dc.subjectCohomologíaes_ES
dc.subjectVariedades (Matemáticas)es_ES
dc.subjectMatemáticaes_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.01.00es_ES
dc.titleEspacios fibrados, clases características y el isomorfismo de Thomes_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
renati.discipline541137es_ES
renati.levelhttps://purl.org/pe-repo/renati/level#maestroes_ES
renati.typehttp://purl.org/pe-repo/renati/type#tesises_ES
thesis.degree.disciplineMatemáticases_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Escuela de Posgradoes_ES
thesis.degree.levelMaestríaes_ES
thesis.degree.nameMaestro en Matemáticases_ES

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
ARROYO_FLORES_MERWIL_ESPACIOS_FIBRADOS_CLASES_CARACTERISTICAS_ISOMORFISMO_THOM.pdf
Size:
886.35 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: