Resolución tórica de singularidades
Archivos
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Resumen
En el presente trabajo de tesis, una variedad tórica afín es una variedad algebraica X que contiene un toro algebraico T ≈ (C ∗) n como un abierto de Zariski denso y verifica que la acción del toro T sobre sí mismo se extiende a una acción del toro T sobre X. En este trabajo las variedades tóricas al cual hacemos referencia, son variedades algebraicas que se construyen de una manera especial, utilizando conos σ; es entonces que podemos demostrar que siempre podremos encontrar una resolución de singularidades que es inducida por el refinamiento del cono σ. Por lo tanto, el problema de resolver las singularidades de las variedades tóricas se ha reducido al problema combinatorio de encontrar un refinamiento de un cono, por ello mostramos la construcción y resolución mediante ejemplos, no sin antes verificar todos los aspectos matemáticos que garanticen los objetivos de la tesis el cual es resolver singularidades de una variedad tórica.
In the present thesis work, an affine toric variety is an algebraic variety X containing an algebraic torus T ≈ (C ∗) n as a Zariski open dense and verify that the action of the torus T on itself extends to an action of the torus T on X. In this work the toric varieties to which we refer, are algebraic varieties that are constructed in a special way, using cones σ; it is then that we can demonstrate that we can always find a resolution of singularities that is induced by the refinement of the cone σ. Therefore, the problem of solving the singularities of the toric varieties has been reduced to the combinatorial problem of finding a refinement of a cone, for that reason we show the construction and resolution by means of examples, but not before verifying all the mathematical aspects that guarantee the objectives of the thesis which is to solve singularities of a toric variety.
In the present thesis work, an affine toric variety is an algebraic variety X containing an algebraic torus T ≈ (C ∗) n as a Zariski open dense and verify that the action of the torus T on itself extends to an action of the torus T on X. In this work the toric varieties to which we refer, are algebraic varieties that are constructed in a special way, using cones σ; it is then that we can demonstrate that we can always find a resolution of singularities that is induced by the refinement of the cone σ. Therefore, the problem of solving the singularities of the toric varieties has been reduced to the combinatorial problem of finding a refinement of a cone, for that reason we show the construction and resolution by means of examples, but not before verifying all the mathematical aspects that guarantee the objectives of the thesis which is to solve singularities of a toric variety.
Descripción
Palabras clave
Variedades, Singularidades
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto donde se indique lo contrario, la licencia de este ítem se describe como info:eu-repo/semantics/openAccess