Climatología de las mareas y onda planetaria Q2D en la región de la mesósfera y baja termósfera sobre la costa central de Perú
Date
2023-01-10
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Abstract
La Mesosfera y Baja Termosfera (MLT) es la región que conecta la atmósfera con el
geoespacio. La comprensión y caracterización de la dinámica de esta región MLT
puede permitir mejorar las simulaciones y predicciones de modelos atmosféricos.
Este trabajo mostrará resultados de la climatología de vientos de fondo, mareas (8,
12 y 24 horas) y onda planetaria cuasi-dos días (Q2D) obtenidos a partir del análisis
de vientos medios zonales y meridionales que han sido estimados a alturas entre
80 -100 km sobre la costa central del Perú. Se está considerando dos años y medio
de datos de viento (noviembre 2020 - abril 2022) medidos con el radar multistático
de meteoros especulares ubicado alrededor del Radio Observatorio Jicamarca
(11.95°S, 76.87°O) (SIMONe Jicamarca). Además, esta climatología observacional
se compara con una climatología obtenida con el modelo WACCM-X. En base a las
observaciones, se puede concluir que, en general, la marea diurna es más intensa
que la marea semidiurna, y que las componentes meridionales son más intensas
que las zonales. Además, las observaciones muestran amplitudes más altas que el
modelo. Como promedio, las correlaciones (proporciones) de amplitudes entre las
observaciones y el modelo son 0.27 (1.8) para la componente zonal y 0.27 (2.0) para
la componente meridional. Las mejores correlaciones (0.41 - 0.46) se obtuvieron
para las componentes zonal y meridional de la marea 24h, y para la componente
zonal de la marea 8h y del viento medio. Las observaciones muestran que Q2D
tiene el módulo máximo en los meses locales de verano (principalmente enero),
mientras que el modelo además del verano local, muestra amplitudes significativas
en los meses de invierno (junio y julio). Las observaciones muestran que la marea
de 24 horas tiene la máxima intensidad entre agosto y septiembre, y un segundo
pico en abril, pero el modelo muestra dos picos máximos similares, el primero entre
agosto y septiembre, y el segundo entre febrero y abril. En este trabajo se describen
más detalles sobre las variaciones mensuales y estacionales de los vientos MLT,
vientos medios, mareas (amplitudes y longitud de onda vertical) y onda planetaria
Q2D y su comparación con el modelo WACCM-X. Finalmente, la metodología utilizada
para obtener la climatología de estas ondas atmosféricas fue el ajuste por
mínimos cuadrados y el análisis wavelet. Se compararon los resultados de ambos
métodos y se discutió la equivalencia entre ellos.
The Mesosphere and Lower Thermosphere (MLT) is the region which connects the atmosphere with the geospace. The understanding and characterization of the dynamics of this MLT region can allow to improve the simulations and prediction of atmospheric models. This work will show results of the climatology of background winds, tides (8, 12 and 24 hours) and quasi-two-day (Q2D) planetary waves obtained from the analysis of zonal and meridional mean winds that have been estimated at heights between 80-100 km over the central coast of Peru. It is being considered in this analysis two years and half of wind data (November 2020 - April 2022) measured with the multistatic specular meteor radar deployed around the Jicamarca Radio Observatory (11.95°S, 76.87°W) (SIMONe Jicamarca). Furthermore, this observational climatology is compared to a climatology obtained with the WACCM-X model. Based on the observations, it can be concluded that, in general, the diurnal tide is more intense than the semidiurnal tide, and that the meridional components are more intense than the zonal ones. Moreover, the observations show higher amplitudes than the model does. As average, correlations (ratios) of amplitudes between the observations and the model are 0.27 (1.8) for the zonal component and 0.27 (2.0) for the meridional component. The best correlations (0.41 - 0.46) were obtained for the zonal and meridional componets of 24h tide, and for the zonal component of 8h tide and the background wind. The observations show that Q2D has the maximum module in the local summer months (mainly January), while the model, in addition to the local summer, shows significant amplitudes in the winter months (June and July). Observations show that the 24h tide has the main maximum intensity between August and September, and a second peak in April, but the model shows two similar maximum peaks, the first one between August and September and the second one between February and April. Further details about the monthly and seasonal variations of the MLT winds, mean winds, tides (amplitudes and vertical wavelength) and Q2D PW and their comparison to the WACCM-X model are described in this work. Finally, the methodology used to obtain the climatology of this atmospheric waves were the least square fitting and the wavelet analysis. Results from both methods were compared and equivalence between them were discussed.
The Mesosphere and Lower Thermosphere (MLT) is the region which connects the atmosphere with the geospace. The understanding and characterization of the dynamics of this MLT region can allow to improve the simulations and prediction of atmospheric models. This work will show results of the climatology of background winds, tides (8, 12 and 24 hours) and quasi-two-day (Q2D) planetary waves obtained from the analysis of zonal and meridional mean winds that have been estimated at heights between 80-100 km over the central coast of Peru. It is being considered in this analysis two years and half of wind data (November 2020 - April 2022) measured with the multistatic specular meteor radar deployed around the Jicamarca Radio Observatory (11.95°S, 76.87°W) (SIMONe Jicamarca). Furthermore, this observational climatology is compared to a climatology obtained with the WACCM-X model. Based on the observations, it can be concluded that, in general, the diurnal tide is more intense than the semidiurnal tide, and that the meridional components are more intense than the zonal ones. Moreover, the observations show higher amplitudes than the model does. As average, correlations (ratios) of amplitudes between the observations and the model are 0.27 (1.8) for the zonal component and 0.27 (2.0) for the meridional component. The best correlations (0.41 - 0.46) were obtained for the zonal and meridional componets of 24h tide, and for the zonal component of 8h tide and the background wind. The observations show that Q2D has the maximum module in the local summer months (mainly January), while the model, in addition to the local summer, shows significant amplitudes in the winter months (June and July). Observations show that the 24h tide has the main maximum intensity between August and September, and a second peak in April, but the model shows two similar maximum peaks, the first one between August and September and the second one between February and April. Further details about the monthly and seasonal variations of the MLT winds, mean winds, tides (amplitudes and vertical wavelength) and Q2D PW and their comparison to the WACCM-X model are described in this work. Finally, the methodology used to obtain the climatology of this atmospheric waves were the least square fitting and the wavelet analysis. Results from both methods were compared and equivalence between them were discussed.
Description
Keywords
Física atmosférica, Atmósfera, Mareas, Vientos, Climatología--Perú
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess