Estimación de un modelo predictivo de vibraciones inducidas por voladura en campo medio y campo lejano para el cuidado de estructuras en una mina superficial en proceso de cierre
Files
Date
2020-12-11
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Abstract
El uso de explosivos en procesos de voladura en minas libera energía en forma de vibraciones,
que no necesariamente ayudan en la fragmentación de la roca, sino que originan una
perturbación de estructuras cercanas a la fuente de la explosión, principalmente a través de
ondas sísmicas en todas las direcciones. Durante la vida de una operación minera a tajo abierto,
la mayoría de sus componentes como el tajo principal, las plataformas de descarga y de
lixiviación deben alcanzar una estabilidad física, especialmente cuando inicia su proceso de
cierre. La presente investigación tiene como objetivo desarrollar un modelo de predicción de
las vibraciones inducidas utilizando datos históricos de monitoreo en una mina a cielo abierto
ubicada en la sierra peruana, esto con el fin de proteger los taludes de diseño final (Campo
Medio) y las edificaciones sensibles de los poblados más cercanos (Campo Lejano).
Ambos modelos están basados en la teoría de Devine de la distancia escalada de raíz cuadrada
(SRSD) para predecir la velocidad máxima de partículas (VPP). Las distancias de monitoreo
en campo medio oscilan entre 30 y 150 metros, las estructuras en este intervalo deben ser
atendidas por los criterios de falla de Cameron McKenzie, que se basan en las propiedades
geomecánicas del macizo rocoso y la velocidad de propagación de la onda P (Vp) combinadas
a través de la Ley de Hooke. Para el campo lejano se tienen distancias desde los 150 hasta los
1000 metros, por lo que se ha optado por utilizar la norma alemana DIN 4150. El valor límite
utilizado fue de 3 mm/s para frecuencias bajas en estructuras muy sensibles.
La metodología consistió en la reducción de registros en base a estándares operativos, seguido
de una discriminación por métodos de estadística robusta y regresión lineal. De esta manera
se obtuvieron, en ambos escenarios, ábacos de distribución de cargas para predecir la VPP a
una determinada distancia, que permite junto a los criterios establecidos previamente, limitar
los explosivos para un mejor cuidado de estructuras.
The use of explosives on mining blasting processes release energy in form of vibrations, that are not useful for the rock fragmentation but to disturb the near structures near the blasting source, those are released on every direction through seismic waves. During the operational life of an open pit mine, most of its components such as the dumping platforms, leaching PADs and the pit itself have to reach a physic stability and with special care during the closure process. The main objective of the following thesis is to develop a vibrations prediction model using historical monitoring data of an open pit mining operation located on the Peruvian highlands, in order to protect the final design slopes (Medium Field) and the sensible constructions of the closest villages (Far Field). Both models are based on the Square Root Scaled Distance (SRSD) of Devine´s theory to predict the Peak Particle Velocity (PPV). Medium Field monitoring distances oscillates between 30 and 150 meters, and the structures from this range must be analyzed through the Failure Criteria of Cameron McKenzie, which is based on the rock mass geo mechanical properties and the P wave propagation speed combined with the Hooke´s Law. For the Far Field, the distances ranges from 150 to 1000 meters, therefore it was chosen to use the German rule DIN 4150. The limit value was of 3 mm/s for low frequencies over highly sensible structures. The methodology consisted on the reduction of measurement records according to operational standards, followed by the statistical discrimination and the lineal regression model. In this way, over the two scenarios it was obtained charge distribution abacus to predict the PPV for any distance, which allows together with the previous described criteria, limit the explosives to protect the structures.
The use of explosives on mining blasting processes release energy in form of vibrations, that are not useful for the rock fragmentation but to disturb the near structures near the blasting source, those are released on every direction through seismic waves. During the operational life of an open pit mine, most of its components such as the dumping platforms, leaching PADs and the pit itself have to reach a physic stability and with special care during the closure process. The main objective of the following thesis is to develop a vibrations prediction model using historical monitoring data of an open pit mining operation located on the Peruvian highlands, in order to protect the final design slopes (Medium Field) and the sensible constructions of the closest villages (Far Field). Both models are based on the Square Root Scaled Distance (SRSD) of Devine´s theory to predict the Peak Particle Velocity (PPV). Medium Field monitoring distances oscillates between 30 and 150 meters, and the structures from this range must be analyzed through the Failure Criteria of Cameron McKenzie, which is based on the rock mass geo mechanical properties and the P wave propagation speed combined with the Hooke´s Law. For the Far Field, the distances ranges from 150 to 1000 meters, therefore it was chosen to use the German rule DIN 4150. The limit value was of 3 mm/s for low frequencies over highly sensible structures. The methodology consisted on the reduction of measurement records according to operational standards, followed by the statistical discrimination and the lineal regression model. In this way, over the two scenarios it was obtained charge distribution abacus to predict the PPV for any distance, which allows together with the previous described criteria, limit the explosives to protect the structures.
Description
Keywords
Voladuras (Minería), Vibración--Predicción, Ingeniería de minas
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess