Exploración taxonómica y funcional de la diversidad microbiana en suelos de bosques amazónicos del Perú
No Thumbnail Available
Date
2025-02-07
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Abstract
Los bosques amazónicos desempeñan un papel crucial en el equilibrio ecológico global
y son considerados elementos fundamentales para mitigar los efectos del cambio climático.
Además, sus suelos son el mayor reservorio de carbono a nivel mundial y brindan
una variedad de servicios ecosistémicos esenciales. Los microorganismos edáficos son
los principales motores metabólicos que facilitan la persistencia del carbono en el suelo
en forma de materia orgánica, y el equilibrio de macronutrientes como el nitrógeno
y el fósforo es clave en este proceso. Además, la eficiencia metabólica del ciclado de
estas moléculas depende en gran medida de la disponibilidad de micronutrientes, como
las vitaminas. Por otra parte, factores externos como el cambio en el uso del suelo y la
contaminación ambiental, que incluye a la minería artesanal del oro, pueden alterar la
funcionalidad de estas comunidades al ejercer presión selectiva sobre poblaciones microbianas
específicas.
Para profundizar en el entendimiento de la actividad microbiana, destaca la metagenómica
como estrategia metodológica. Esta técnica consiste en la secuenciación de todo el
ADN presente en una muestra para realizar interpretaciones biológicas, proporcionando
un perfil taxonómico y funcional de la comunidad microbiana en su conjunto.
El presente estudio tuvo como objetivo evaluar la diversidad microbiana en los suelos
superficiales de dos ecosistemas boscosos de la Amazonía peruana: la Reserva Nacional
de Tambopata y la Concesión para la Conservación Río Los Amigos (CICRA). Estos ecosistemas
representan un bosque maduro (primario) y un bosque secundario de crecimiento
antiguo, respectivamente. Además, en el bosque de Tambopata se compararon parcelas de
bosque, una de las cuales fue afectada por la formación natural de un claro o gap. Este estudio
busca explicar las diferencias en la estructura comunitaria microbiana en función de
las características de su entorno y el potencial fisiológico específico de cada comunidad edáfica.
Los resultados muestran que estos bosques se caracterizan por sus suelos superficiales
francos, ácidos y contienen cantidades de carbono y nitrógeno similares. La estrategia de
secuenciación por submuestras y análisis agrupado utilizado en el presente estudio parece
ser óptima para estudios comparativos; con una profundidad de secuenciación por muestra
de ∼ 6 Gb resultó suficiente para describir la estructura poblacional microbiana con una
cobertura adecuada. Sin embargo, no permitió ensamblar genomas individuales de alta
calidad.
Por otro lado, los resultados sugieren que una perturbación natural, como la formación
de gaps, no afecta la estructura poblacional microbiana. Sin embargo, se identificaron
diferencias importantes entre las comunidades microbianas de los suelos de Tambopata y
CICRA. El análisis centrado en genes, como el gen de la reductasa de mercurio (merA),
sugiere un papel relevante de las micobacterias frente a la contaminación por mercurio en
el bosque de CICRA. Además, se plantea que la población mayoritaria de Bradyrhizobium
en todos los suelos corresponde a microorganismos de vida libre que, a diferencia de sus
contrapartes simbióticas, no parecen participar en la fijación de nitrógeno. Su función
ecológica podría estar relacionada con la provisión de cobalamina al entorno.
Este estudio constituye una base fundamental para el monitoreo de las comunidades
microbianas edáficas en la Amazonía suroccidental, especialmente en respuesta al cambio
climático y al impacto antropogénico inminente en los bosques de esta región.
Amazon forests play a pivotal role in maintaining global ecological balance and are recognized as essential in mitigating climate change impacts. Notably, their soils constitute the largest carbon reservoirs globally and provide a spectrum of crucial ecosystem services. Soil microorganisms serve as primary metabolic drivers, enabling the persistence of carbon within the soil matrix as organic matter. This process is critically modulated by the balance of macronutrients, particularly nitrogen and phosphorus. The efficiency of these metabolic processes, especially those linked to biogeochemical cycling, is largely contingent upon the availability of micronutrients, including essential vitamins. Moreover, external factors such as land-use change and pollution (e.g., artisanal gold mining) may alter microbial community functionality by applying selective pressures on specific microbial populations. Various methodological strategies have been developed to advance our understanding of microbial dynamics, with metagenomics emerging as a leading approach. This technique enables the sequencing of all DNA within a sample, facilitating taxonomic and functional characterization of the integrated microbial community. The present study aimed to assess the microbial diversity of the topsoil within two forest ecosystems in the Peruvian Amazon: the Tambopata National Reserve and the Los Amigos River Conservation Concession (CICRA). These sites represent a mature (primary) forest and an old-growth secondary forest, respectively. Within Tambopata, the plots affected by the natural formation of a canopy gap were compared to the undisturbed plots. The study sought to elucidate variations in the structure of the microbial community as a function of environmental conditions and the unique physiological potential of each soil community. According to the results, these forests are characterized by loam-acid soil and high carbon and nitrogen availability. On the other hand, the subsample sequencing approach followed by merged analyses employed seems optimal for comparative analysis, achieving a per-sample sequencing depth of ∼ 6 Gb, adequate to characterize microbial population assembly with high coverage, though not sufficient for isolation of high-quality metagenome-assembled genomes. The findings suggest that natural disturbances, such as gap formation, do not significantly affect the microbial community structure. However, marked differences were observed between the microbial communities in Tambopata and CICRA soils. Gene-centric analyses, such as those targeting mercury reductase (merA), implicate Mycobacteria in potential responses to mercury contamination within the CICRA forest. Furthermore, the dominant population of Bradyrhizobium across all soil samples likely represents freeliving organisms that, unlike their symbiotic counterparts, may not contribute to nitrogen fixation. Instead, their ecological role may be associated with the environmental provision of cobalamin. This study establishes a foundational framework for monitoring soil microbial communities in the southwestern Amazon, particularly in the context of climate change and the growing anthropogenic pressures on these vital forest ecosystems.
Amazon forests play a pivotal role in maintaining global ecological balance and are recognized as essential in mitigating climate change impacts. Notably, their soils constitute the largest carbon reservoirs globally and provide a spectrum of crucial ecosystem services. Soil microorganisms serve as primary metabolic drivers, enabling the persistence of carbon within the soil matrix as organic matter. This process is critically modulated by the balance of macronutrients, particularly nitrogen and phosphorus. The efficiency of these metabolic processes, especially those linked to biogeochemical cycling, is largely contingent upon the availability of micronutrients, including essential vitamins. Moreover, external factors such as land-use change and pollution (e.g., artisanal gold mining) may alter microbial community functionality by applying selective pressures on specific microbial populations. Various methodological strategies have been developed to advance our understanding of microbial dynamics, with metagenomics emerging as a leading approach. This technique enables the sequencing of all DNA within a sample, facilitating taxonomic and functional characterization of the integrated microbial community. The present study aimed to assess the microbial diversity of the topsoil within two forest ecosystems in the Peruvian Amazon: the Tambopata National Reserve and the Los Amigos River Conservation Concession (CICRA). These sites represent a mature (primary) forest and an old-growth secondary forest, respectively. Within Tambopata, the plots affected by the natural formation of a canopy gap were compared to the undisturbed plots. The study sought to elucidate variations in the structure of the microbial community as a function of environmental conditions and the unique physiological potential of each soil community. According to the results, these forests are characterized by loam-acid soil and high carbon and nitrogen availability. On the other hand, the subsample sequencing approach followed by merged analyses employed seems optimal for comparative analysis, achieving a per-sample sequencing depth of ∼ 6 Gb, adequate to characterize microbial population assembly with high coverage, though not sufficient for isolation of high-quality metagenome-assembled genomes. The findings suggest that natural disturbances, such as gap formation, do not significantly affect the microbial community structure. However, marked differences were observed between the microbial communities in Tambopata and CICRA soils. Gene-centric analyses, such as those targeting mercury reductase (merA), implicate Mycobacteria in potential responses to mercury contamination within the CICRA forest. Furthermore, the dominant population of Bradyrhizobium across all soil samples likely represents freeliving organisms that, unlike their symbiotic counterparts, may not contribute to nitrogen fixation. Instead, their ecological role may be associated with the environmental provision of cobalamin. This study establishes a foundational framework for monitoring soil microbial communities in the southwestern Amazon, particularly in the context of climate change and the growing anthropogenic pressures on these vital forest ecosystems.
Description
Keywords
Diversidad microbiana--Perú--Amazonía, Región, Taxonomía--Perú--Amazonía, Región, Bosques--Perú--Amazonía, Región
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/embargoedAccess