2. Maestría
Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2
Tesis de la Escuela de Posgrado
Browse
2 results
Search Results
Item Estudio del método de Galerkin discontinuo nodal aplicado a la ecuación de advección lineal 1D(Pontificia Universidad Católica del Perú, 2019-01-21) Sosa Alva, Julio César; Casavilca Silva, Juan EduardoThe present work focuses on Nodal Discontinuous Galerkin Method applied to the one-dimensional linear advection equation, which approximates the global solution, partitioning its domain into elements. In each element the local solution is approximated by using interpolation in such a way that the total numerical solution is a direct sum of those approximations (polynomials). This method aims at reaching a high order through a simple implementation. This model is studied by Hesthaven and Warburton [16], with the particularity of Joining the best of the Finite Volumes Method and the best of Finit Element Method . First, the main results are revised in detail concerning the Jacobi orthogonal polynomials; more precisely, its generation formula and other results which help implementing the method. Concepts regarding interpolation and best approximation are studied. Furthermore, some notions about Sobolev space interpolation is revised. Secondly, theoretical aspects of the method are explained in detail , as well as its functioning. Thirdly, both the two method consistency theorems (better approximation and interpolation), proposed by Canuto and Quarteroni [4], and error behavior theorem based on Hesthaven and Warburton [16] are explained in detail. Finally, the consistency theorem referred to the interpolation is veri ed numerically through the usage of the Python language as well as the error behavior. It is worth mentioning that, from our numerical results, we propose a new bound for the consistency (relation 4.2 (4.2)), whose demonstration will remain for a future investigation.Item Resolución de la ecuación de advección lineal unidimensional por un método de volúmenes finitos compacto de alto orden(Pontificia Universidad Católica del Perú, 2018-02-12) Chávez Pacheco, Xyoby; Casavilca Silva, Juan EduardoLos métodos numéricos de alto orden, necesarios para la discretización espacial, son una de las áreas más activas del campo de la dinámica de fluidos computacional (CFD en sus siglas en inglés). Dentro de estos, los Métodos de Volúmenes Finitos (MVF) han encontrado difcultades en la implementación de los procesos de reconstrucción. En el presente trabajo presentamos e implementamos en Python un novedoso proceso de reconstrucción compacto de alto orden propuesto por Q. Wang [22]. La novedad yace en que el orden alto es alcanzado usando un estencil compacto; es decir, usando únicamente celdas vecinas. En este proceso se obtiene un conjunto de relaciones que sirven para obtener los coeficientes de los polinomios de reconstrucción sobre los volúmenes de control de interés preservando sus valores promedios y el de sus derivadas. Con estas relaciones obtenemos un sistema lineal sobredeterminado que al ajustarse por mínimos cuadrados resultan en un sistema tridiagonal por bloques para el caso de una ecuación de advección 1D. Para esta ecuación de advección usamos además el Análisis de Fourier para examinar los números de onda modificados por el MVF compacto. La reconstrucción incluye parámetros que son optimizados para mejorar las propiedades de dispersión/disipación. Así mismo, el análisis de estabilidad de von Neumann nos permite estimar el número CFL (Courant Friedrich Levy) máximo para dos métodos de Runge-Kutta. Finalmente, validamos tanto los órdenes de convergencia de la combinación del MVF compacto con dos esquemas de Runge-Kutta como los parámetros óptimos de los esquemas de reconstrucción.