Ingeniería Mecatrónica (Lic.)

Permanent URI for this collectionhttp://98.81.228.127/handle/20.500.12404/4486

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Diseño de un sistema automático para el cultivo vertical de hortalizas e inspección por visión artificial
    (Pontificia Universidad Católica del Perú, 2024-10-16) Aguilar Paredes, David Moisés; Crisóstomo Romero, Pedro Moisés
    La incertidumbre en la producción de alimentos se intensifica debido a la contaminación del suelo, el cambio climático y el inminente aumento de la población a 9.8 mil millones de personas. La agricultura convencional, con su uso intensivo de químicos, ha contribuido a perder el 30% de las tierras arables a nivel mundial en las últimas cuatro décadas. Esta situación destaca la urgencia de replantear los métodos de producción para abordar la creciente demanda, preservar los recursos y garantizar la sostenibilidad a largo plazo. En respuesta a este desafío, la agricultura vertical ha surgido como una solución tecnológica que ofrece protección contra insectos y enfermedades, además de posibilitar la producción independientemente de los factores climáticos. Este estudio de investigación se propone analizar el estado actual de la agricultura vertical, diseñar un sistema que permita el cultivo e inspección a través de visión artificial, y seleccionar dicho sistema mediante criterios técnicoseconómicos y un análisis de costos. En el primer capítulo, se presenta la problemática abordada, los objetivos, la metodología, y el alcance del trabajo. Se realiza un análisis exhaustivo del estado del arte sobre las tecnologías en cultivos verticales y proyectos anteriores. En el segundo capítulo, se aborda el proyecto conceptual, destacando la elección de una solución basada en un análisis técnico-económico. Esta solución implica la propuesta de una estructura metálica para alojar niveles de cultivos, integrando sensores para monitorear los parámetros de las plantas y actuadores para la distribución de la solución nutritiva. En el tercer capítulo, se diseña y simula la estructura metálica para garantizar el cumplimiento de los requerimientos establecidos. Además, se eligen los sensores, actuadores, fuentes de energía y una cámara para el subsistema propuesto. Finalmente, se simula el algoritmo de procesamiento de imágenes, se realizan pruebas del subsistema de transporte de la cámara, se estima el costo y se presentan las conclusiones del proyecto. En resumen, esta investigación propone una solución innovadora que integra la agricultura vertical y visión artificial para abordar los desafíos de la agricultura tradicional, siendo clave para asegurar la futura seguridad alimentaria.
  • Thumbnail Image
    Item
    Khallwa: robot aéreo para la identificación del estado de madurez de arándanos en los arbustos utilizando aprendizaje profundo
    (Pontificia Universidad Católica del Perú, 2024-08-16) Valera Espinoza, Jason Luis; Crisóstomo Romero, Pedro Moisés
    La industria de arándano en nuestro país ha alcanzado un incremento en los últimos años. Por lo cual, el uso de nuevas tecnologías para el sector agroindustrial se convierte en un complemento para el desarrollo de una producción adecuada. El presente documento propone el diseño de un sistema que indique el estado de madurez del arándano en los arbustos utilizando aprendizaje profundo. El sistema se diseña para ser utilizado en campos de cultivo de arándanos de las localidades costeras del territorio peruano y abarca la concepción de un robot aéreo que podrá navegar dentro del campo de cultivo y registrar los arándanos en los arbustos mediante captura de imágenes, las cuales posteriormente serán analizadas por un algoritmo de identificación para clasificarlas por su estado de madurez. Para cumplir el objetivo, inicialmente se identificaron los requerimientos del sistema y posteriormente se proponen tres conceptos de solución por medio de la identificación de funciones. Luego de ponderar los tres conceptos de solución y realizar un análisis técnicoeconómico se selecciona un robot aéreo (“Khallwa”) de material de fibra de carbono y polipropileno expandido que posee una envergadura de 0.8 metros, un largo de 0.53 metros y una masa de 0.55 kilogramos. Una autonomía de vuelo de 10 minutos a una velocidad máxima de 6.2 m/s. Finalmente, con el objetivo de la identificación del arándano por su estado de madurez realizado se utilizó un modelo de aprendizaje profundo basado en aprendizaje por transferencia, el cual obtuvo una precisión media (mAP) del 92%, lo que conlleva a agilizar el proceso de inspección y evitar errores producidos en el proceso manual.