Ingeniería Civil (Mag.)

Permanent URI for this collectionhttp://98.81.228.127/handle/20.500.12404/766

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    Evaluación del desempeño sísmico de un edificio peruano de concreto armado con dispositivos de fluido viscoso
    (Pontificia Universidad Católica del Perú, 2024-04-02) Quiroga Flores, Luis Enrique; Muñoz Peláez, Juan Alejandro
    En el protocolo peruano de diseño de edificaciones con sistemas de dispositivos de fluido viscoso (DFV) no se incluye la evaluación del desempeño ni la estimación del daño. El objetivo de este trabajo es evaluar el desempeño sísmico de un edificio peruano representativo con DFV no lineales (EDIF-DFV). Se diseñó un edificio convencional con muros y pórticos de concreto armado (EDIFCONV), usando las normas peruanas de edificaciones y se incorporó un sistema de DFV diseñado con la norma estadounidense FEMA 273. Se seleccionó la alternativa de distribución de DFV que produjo la mayor reducción de derivas de entrepiso. Luego se desarrolló la comparación del desempeño sísmico del EDIF-DFV con respecto al EDIF-CONV, usando el Análisis Dinámico Incremental (IDA). El desempeño fue evaluado usando el desplazamiento lateral de la azotea (SEAOC, Vision 2000), derivas de entrepiso (HAZUS-MH MR4), y el daño en los elementos estructurales mediante los giros inelásticos en las rótulas (ASCE 41). Los resultados del EDIF-CONV mostraron que, para los sismos de 50 y 100 años, presentaría un estado funcional, daño leve, prácticamente sin requerir reparaciones. Para el sismo de 500 años, seguiría funcional, pero con daño moderado y requeriría una reparación menor en las placas. Para el sismo de 2500 años, estaría en resguardo de vida, con daño moderado más acentuado y requeriría reparaciones en las vigas y placas. En cambio, en el EDIF-DFV, para los sismos de 50 y 100 años, se encontraría operativo y casi sin daño. Para el sismo de 500 años, estaría funcional con daño leve y prácticamente sin requerir reparaciones. Para el sismo de 2500 años, seguiría funcional, pero con daño moderado y requeriría reparaciones en las placas. Para los sismos de 500 y 2500 años, las columnas adyacentes a los DFV presentarían mayor daño respecto al EDIF-CONV, pero no excederían el umbral de daño de “Ocupación Inmediata”. Se concluye que, para sismos con intensidades menores o equivalentes al sismo de 500 años, el daño del EDIF-DFV sería leve, prácticamente sin requerir reparaciones. Se recomendaría incorporar DFV en un edificio peruano convencional para disminuir los costos de reparación por daños.
  • Thumbnail Image
    Item
    Comportamiento de edificaciones prefabricadas de concreto con arriostramientos de acero
    (Pontificia Universidad Católica del Perú, 2023-07-17) Sedano Cabrera, Jhonatan Christian; Asmat Garaycochea, Christian Alberto
    En el Perú, el déficit de viviendas es considerable (11.2%); asimismo, la respuesta estatal ante emergencias ha sido lenta e ineficiente, muestra de lo descrito fue la lenta reconstrucción de viviendas afectadas en el sismo de Ica de 2007 (90% de avance en 10 años), o la reconstrucción de viviendas e infraestructura general producto del Fenómeno del Niño del 2017, aún en ciernes. Así, lo descrito abre el abanico en cuanto a la exploración de alternativas constructivas que demuestren eficiencia estructural y económica para contribuir a la brecha inmobiliaria existente, y mejorar la respuesta estatal ante emergencias. Los prefabricados, por sus características inherentes, proveen eficiencia, rapidez y economía a la construcción; asimismo, en experiencias pasadas, se observó un comportamiento favorable ante solicitaciones sísmicas. No obstante, fueron recopilados puntos a mejorar como la formación de diafragma, la distribución de las líneas resistentes ante cargas laterales, entre otros. El presente trabajo de investigación pretende aportar a la promoción de la estructuración con elementos prefabricados, para contribuir de algún modo a cubrir el vacío que la normativa peruana tiene con la estructuración de estos elementos; al considerarlos solo como sistemas no convencionales. Para ello, se propuso la estructuración de un edificio de departamentos unifamiliares con dos alternativas: la primera, con elementos de concreto armado, y la segunda, con prefabricados de concreto con arriostramientos de acero ASTM A500 como parte del sistema resistente ante fuerzas laterales; y se realizó un comparativo de su desempeño estructural utilizando análisis estático y dinámico no lineal. Los resultados obtenidos muestran que la estructuración con prefabricados de concreto y arriostramientos de acero exhibe un buen desempeño ante sismos raros (Tr= 475 años); y que, además, ostenta un mecanismo de falla dúctil, en una variante del mecanismo viga débil-columna fuerte.
  • Thumbnail Image
    Item
    Procedimientos constructivos erróneos en edificios de concreto armado
    (Pontificia Universidad Católica del Perú, 2018-02-21) Lengua Fernández, Marko Antonio; Ottazzi Pasino, Gianfranco Antonio
    El presente trabajo reúne de forma ordenada los errores que se cometen durante los procesos constructivos de un edificio multifamiliar, y se ha orientado la atención exclusivamente hacia el “concreto armado”. Además se han incluido en forma didáctica los anexos “procedimientos constructivos erróneos en albañilería” y “tratamiento inadecuado del concreto simple”, como complemento del tema principal. El trabajo está dividido en tres capítulos: cimentaciones, elementos estructurales verticales y elementos estructurales horizontales; se finaliza con las respectivas observaciones y conclusiones, más una referencia bibliográfica. Al final se incluyen seis anexos, los cuatro primeros como una ampliación de los temas referidos en los tres capítulos principales, y los dos últimos ya mencionados en el primer párrafo. La metodología a seguir comienza con la detección de errores dentro de los procesos constructivos, los cuales se van archivando y documentando sobre todo con fotografías, y de ser necesario se incluyen gráficos para la explicación. Al problema encontrado se le asigna un lugar dentro de la estructura del trabajo, haciendo una explicación previa de la importancia desde el punto de vista teórico de porqué es necesario proceder correctamente. Después se hace una recomendación basada en normas y reglamentos de Ingeniería en el Perú, así como en estudios previos de especialistas reconocidos a nivel mundial. En algunos casos y a través de los anexos, se han ampliado las explicaciones mediante un análisis numérico, con el fin de reforzar el sustento científico presentado. Se ha puesto énfasis en la presentación visual de la tesis, con fotografías en su mayor parte recolectadas por el autor así como gráficos explicativos. También se ha recurrido a otras fuentes como Internet y/o publicaciones pasadas. El trabajo propone una solución ante las dificultades que se presentan durante el proceso constructivo, y quedando demostrado que en nuestro medio, el seguir los estándares de calidad en estructuras, no es imposible.
  • Thumbnail Image
    Item
    El refuerzo de las estructuras de concreto armado con aceros de grado 75 en el Perú
    (Pontificia Universidad Católica del Perú, 2016-11-28) Lovera Martínez, Luis Guillermo; Zegarra Ciquero, Luis Antonio
    Muchos investigadores han estudiado el comportamiento de las estructuras de concreto armado cuando son reforzadas con aceros de alta resistencia. Algunas normas extranjeras han evaluado los resultados de estas investigaciones y procedido a actualizar sus estándares en ese sentido. En Perú no se ha investigado el comportamiento de estructuras reforzadas con aceros de alta resistencia, en ese sentido en la presente Tesis se estableció como objetivo estudiar el comportamiento de estructuras sismoresistentes de concreto armado, reforzadas con aceros grado 75 en el Perú. El uso de aceros grado 75 con respecto al tradicional acero grado 60 tiene ventajas tales como: diseño de estructuras con menor kilaje de refuerzo, menor cantidad de barras de refuerzo reduciendo la congestión de barras en los nudos, estructuras más esbeltas, y vigas y columnas con mayor resistencia; con las consiguientes ventajas económicas. Perú está ubicado en una zona de alta sismicidad por lo que nuestros reglamentos de diseño sismoresistente son estrictos con los requerimientos de ductilidad que deben cumplir los elementos estructurales con responsabilidad sísmica. Esto no favorece al diseño con aceros de alta resistencia debido a que los aceros pierden ductilidad conforme sean más resistentes. Un edificio aporticado de ocho niveles, de concreto armado, se escogió para el desarrollo de la presente tesis. En este edificio se efectuó el diseño en concreto armado empleando acero de refuerzo grados 60 y 75. A continuación se efectuó un análisis estático no lineal de los casos estudiados a fin de evaluar en qué medida se afecta el comportamiento de la estructura. Los resultados obtenidos muestran que estructuralmente es factible usar aceros grado 75 en el refuerzo de estructuras sismoresistentes similares a la estudiada, recomendando continuar esta línea de investigación para otros tipo de estructuras peruanas.
  • Thumbnail Image
    Item
    Disposiciones sísmicas de diseño y análisis en base a desempeño aplicables a edificaciones de concreto armado
    (Pontificia Universidad Católica del Perú, 2016-09-29) Asmat Garaycochea, Christian Alberto; Zegarra Ciquero, Luis Antonio
    La ingeniería sismo resistente ha seguido un desarrollo importante en los procedimientos de análisis sísmico en los últimos años. Uno de los principales factores que sustentan este desarrollo es la aparición de herramientas computacionales que permiten realizar cálculos más complejos. Sin embargo, a lo largo de este desarrollo, se han presentado sismos de gran magnitud que nos obligan a cuestionar los métodos empleados y la necesidad de investigar sobre el comportamiento completo de las estructuras ante sismos severos. El análisis sísmico comúnmente empleado se basa en un método elástico lineal, en la cual se amplifican las cargas para llegar a casos de solicitaciones últimas. Por otro lado, el diseño de elementos de concreto armado (y de muchos otros materiales) se realiza en una etapa de rotura o de resistencia última. A este procedimiento en conjunto se le conoce como “Diseño en base a resistencia” o “Diseño por factores de carga y resistencia” (Load and Resistance Factor Design, LRFD). Sin embargo, este método de diseño, por basarse en fuerzas, no contempla las fallas posibles por deformación que se pueden presentar en el comportamiento no lineal de los componentes de la estructura. Por ejemplo, la influencia de tener un piso blando, el comportamiento de unas columnas cortas o la capacidad de tener suficiente redundancia en la estructura son temas que no pueden ser revisados de manera analítica mediante métodos elásticos. Estas posibles fallas podrían llevar a la estructura a un estado cercano al colapso. En general, la deficiencia de los métodos en base a fuerzas es la de no poder disponer en la evaluación el comportamiento de la estructura luego de superar los límites elásticos de los componentes y de los materiales. Si se pudiese disponer de la historia del comportamiento inelástico de la estructura, se podría ajustar el diseño con el fin poder proporcionar a la estructura mayor capacidad, principalmente ante cargas sísmicas. Es por ello que las diferentes normas internacionales brindan recomendaciones o lineamientos que intentan evitar fallas o comportamientos no deseados para la estructuras. Por otro lado, el diseño realizado en la etapa de rotura no establece como requisito indispensable el cálculo de la ductilidad disponible en los elementos y, mucho menos, la verificación de la capacidad de la estructura de formar rótulas plásticas sin alcanzar el colapso bajo las cargas sísmicas. Para estos casos también existen recomendaciones para proporcionar a los elementos mayor ductilidad y para disponer de rótulas plásticas más largas, aunque estas hipótesis no podrán ser evaluadas empleando métodos elásticos de análisis. Es por ello que los últimos códigos y normas consideran un “Diseño en base a desplazamiento” o “Diseño en base a desempeño”, los cuales requieren del cálculo de la ductilidad de los componentes y de la estructura, comparándolos con la ductilidad demandada por los sismos máximos considerados. Estas exigencias son generalmente aplicadas a edificaciones sumamente importantes o a estructuras con elementos de disipación de energía, como aisladores o amortiguadores. Cabe mencionar que, a pesar de no haberse mencionado antes, la rigidez de la estructura cumple un rol muy importante al mantener la integridad de los elementos no estructurales y reducir la percepción del movimiento sísmico. Esta rigidez se va degradando conforme la estructura disipe energía mediante la formación de rótulas plásticas. Es por ello que el cálculo y la verificación de los desplazamientos y de las derivas en el rango inelástico es una parte fundamental en el “Diseño en base a desempeño”. El desempeño exigido para cada estructura puede variar según la funcionalidad y la importancia que tenga la edificación. Por ejemplo, un hospital, al ser una edificación que debe mantenerse funcional luego del sismo, debe generar pocas rótulas plásticas en el sismo severo en relación a las que puede ser capaz de presentar. De tal manera, la estructura mantiene niveles bajos de daños, la rigidez se degrada en menor medida y es económicamente reparable. Por otro lado, una edificación menor, como una vivienda, puede tener mayor pérdida de rigidez y mayor cantidad de rótulas plásticas, pero manteniendo su estabilidad y evitando el colapso de la estructura. Por motivos económicos y de funcionalidad, es necesario diferenciar los enfoques de desempeño exigidos para cada tipo de edificación. Es por ello que el Comité VISION 2000 de la Asociación de Ingenieros Estructurales de California (SEAOC, 1995) definió niveles de desempeño sísmico exigidos según la importancia de las edificaciones. En resumen, para estructuras que se encuentran en zonas con alta sismicidad, es necesario tener un enfoque basado en fuerzas, en deformaciones y en ductilidad para cumplir con el nivel de desempeño establecido, según sea el caso. Actualmente, existen herramientas que agilizan y simplifican el cálculo considerando propiedades y métodos no lineales, como el DRAIN-2DX, DRAIN-3DX, PERFORM-3D y SAP2000. (Inel y Baytan, 2006) Muchos de los edificios dañados debido a últimos terremotos ocurridos, han sido diseñados y construidos bajo los principios de diseño sísmico más modernos. Es probable que estos daños sean producto de la falta de comprensión del comportamiento de los materiales estructurales bajo cargas dinámicas y el comportamiento inelástico de los diferentes sistemas estructurales. (Villaverde, 2007). Se han propuesto diferentes métodos, entre simplificados y complejos, para desarrollar análisis estáticos y dinámicos no lineales, de los cuales algunos han sido incluidos como alternativas de análisis en reglamentos y códigos internacionales (Fajfar, 2002). Aun así, es difícil saber si estas herramientas nos permiten evaluar el desempeño de las estructuras debido a solicitaciones que producen al colapso. (Villaverde, 2007) En contraparte de estos nuevos procedimientos que pretenden ser más “exactos”, existe una enorme participación de variables que no pueden tener la misma precisión que estos procedimientos. El ejemplo inmediato es la amplificación del movimiento del terreno, pues es un valor que varía por una gran cantidad de aspectos. Otro ejemplo claro es el amortiguamiento considerado en la estructura, pues es un parámetro dinámico que también es dependiente del daño de la estructura. Es por todo lo mencionado que es necesario estudiar el concepto del comportamiento de las estructuras antes de sumergirse en la tarea de buscar número “precisos” y “exactos”. En los siguientes capítulos se describirá la filosofía actual en la ingeniería sismo resistente y los conceptos necesarios para lograr el comportamiento sísmico requerido de cada estructura.