Ingeniería Electrónica
Permanent URI for this collectionhttp://98.81.228.127/handle/20.500.12404/12
Browse
Search Results
Item Análisis y diagnóstico del estado de paneles fotovoltaicos por el método de electroluminiscencia(Pontificia Universidad Católica del Perú, 2024-12-03) Prado López, Joseph Aldair; Paragua Macuri, Carlos AlbertoEl uso de paneles fotovoltaico ha permitido obtener energía renovable y amigable con el medio ambiente, pues tiene un impacto positivo en la reducción de gases de efecto invernadero. Su rápida popularidad y su acelerado desarrollo tecnológico ha permitido la comercialización de paneles en distintos ámbitos. Sin embargo, estos paneles pueden presentar defectos en sus celdas que en algunos casos no pueden visualizarse e influyen en su performance y como consecuencia en su tiempo de vida; por eso, existen las técnicas de trazador de curvas I-V, la termografía y la electroluminiscencia que permiten obtener la información del estado del panel fotovoltaico. En este trabajo de investigación, se ahonda en la técnica de electroluminiscencia que permite obtener imágenes de alta resolución para analizar los defectos presentes en un panel. Utilizando el sistema de electroluminiscencia “LumiSolarOutDoor”, esta técnica se aplicó a los paneles fotovoltaicos de sistemas conectados a la red en la facultad de Física de la Pontificia Universidad Católica del Perú con el objetivo de constituir una base de datos que servirá para el entrenamiento de la red neuronal pre entrenada “ResNet-50” que realizará la clasificación de su tecnología y del estado de degradación de cada celda que constituye el panel. El algoritmo planteado realiza un preprocesamiento, filtrado, segmentación, extracción de características y clasificación a las nuevas imágenes que se les desea analizar. Además, permite la relación de un modelo eléctrico que traza la curva I-V en base los datos de la placa del panel y los resultados de la clasificación por celda.Item Segmentación semántica de escenas urbanas de la provincia de Huamanga(Pontificia Universidad Católica del Perú, 2024-09-10) Pasapera Huaman, Lui Gustavo; Flores Espinoza, Donato AndrésLa presente tesis se enfoca en la identificación y clasificación de objetos en escenas urbanas de la provincia de Huamanga, explorando un entorno diferente al de las ciudades desarrolladas y otras bases de datos existentes. Se estudiarán las escenas urbanas de Huamanga para segmentar imágenes en 7 clases de datos: personas, vehículos, motociclistas, edificios, veredas, pistas y otros, que incluyen detalles de cielo y cables de energía eléctrica. El enfoque principal de la tesis estará centrado en la visión por computadora, específicamente en la segmentación semántica para la clasificación de objetos. Para ello, se emplearán arquitecturas de aprendizaje profundo pre-entrenadas adaptadas a Deeplabv3+, y se utilizarán imágenes de la provincia de Huamanga como base de datos local. La investigación se inicia con un análisis del estado del arte, destacando la importancia de la clasificación de objetos en escenas urbanas y los beneficios del aprendizaje profundo en comparación con métodos tradicionales. Se enfatiza la necesidad de utilizar bases de datos locales sobre las existentes, así como la base teórica para la clasificación de imágenes locales utilizando Deeplabv3+ y redes de aprendizaje profundo mediante la transferencia de aprendizaje. Posteriormente, se describe el diseño, la recopilación y el enfoque de la base de datos locales en comparación con conjuntos de datos como Imagenet y CityScapes, utilizando la arquitectura Deeplabv3+ junto con redes de aprendizaje profundo en los datos locales. Finalmente, se presentan los resultados basados en el incremento del número de datos, analizando la precisión, el Índice de Jaccard (IoU) y el mBFScore tanto a nivel global como por clase, junto con un análisis comparativo con la base de datos Cityscapes. Se proporcionan tablas sumarias que verifican los resultados de cada red de aprendizaje profundo y se propone hardware para dispositivos capaces de ejecutar tareas de segmentación semántica.