Informática con mención en Ciencias de la Computación
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12404/6357
Browse
2 results
Search Results
Item Desarrollo de recursos léxicos multi-dialécticos para el quechua(Pontificia Universidad Católica del Perú, 2023-03-13) Melgarejo Vergara, Nelsi Belly; Gómez Montoya, Héctor ErasmoLas lenguas de bajos recursos como el quechua no cuentan con recursos léxicos a pesar de ser importantes para contribuir en las investigaciones y en el desarrollo de muchas herramientas de Procesamiento de Lenguaje Natural (NLP) que se benefician o requieren de recursos de este tipo, de esa forma poder contribuir en la preservación de la lengua. El objetivo de esta investigación es construir una WordNet (base de datos léxica) para las variedades quechua sureño, central, amazónico y norteño, y un un etiquetado gramatical de secuencias de palabras (POS tagging) para la variedad del quechua sureño. Para el desarrollo de esta investigación se recopiló información de los diccionarios y se creó corpus paralelo quechua - español, se implementó un algoritmo de clasificación para alinear el sentido de las palabras con el synset del significado en español para cada variedad de la lengua quechua y finalmente se creó un modelo de etiquetación gramatical basado en el modelo BERT. El score obtenido para el POS tagging de la variedad quechua sureño fue 0.85% y para el quechua central 0.8 %.Item Agrupamiento de textos basado en la generación de Embeddings(Pontificia Universidad Católica del Perú, 2022-08-19) Cachay Guivin, Anthony Wainer; Beltrán Castañón, César ArmandoActualmente, gracias a los avances tecnológicos, principalmente en el mundo de la informática se logra disponer de una gran cantidad de información, que en su mayoría son una composición de signos codificados a nivel computacional que forman una unidad de sentido, como son los textos. Debido a la variabilidad y alta volumetría de información navegable en internet hace que poder agrupar información veraz sea una tarea complicada. El avance computacional del lenguaje de procesamiento natural está creciendo cada día para solucionar estos problemas. El presente trabajo de investigación estudia la forma como se agrupan los textos con la generación de Embeddings. En particular, se centra en usar diferentes métodos para aplicar modelos supervisados y no supervisados para que se puedan obtener resultados eficientes al momento de toparse con tareas de agrupamiento automático. Se trabajó con cinco Datasets, y como resultado de la implementación de los modelos supervisados se pudo determinar que el mejor Embedding es FastText implementado con Gensim y aplicado en modelos basados en boosting. Para los modelos no supervisados el mejor Embedding es Glove aplicado en modelos de redes neuronales con AutoEncoder y capa K-means.