Informática con mención en Ciencias de la Computación
Permanent URI for this collectionhttp://98.81.228.127/handle/20.500.12404/6357
Browse
2 results
Search Results
Item Representación vectorial de relación de hiponimia e hiperonimia en español(Pontificia Universidad Católica del Perú, 2020-09-03) Utia Deza, Jose Vicente; Oncevay Marcos, Felix ArturoActualmente, gracias a Internet y a la Web se dispone de información casi ilimitada, la cual está representada a nivel de textos en su mayoría. Así, dado que acceder a estos textos en su mayoría es de libre acceso, nace el interés por su manipulación de una manera automatizada para poder extraer información que se considere relevante. El presente trabajo de investigación se ubica dentro de la detección automática de relaciones léxicas entre palabras, que son relaciones que se establecen entre los significados de las palabras tal como se consigna en el diccionario. En particular, se centra en la detección de relaciones de hiponimia e hiperonimia, debido a que éstas son relaciones de palabras en las que una de ellas engloba el significado de otra o viceversa, lo cual podría considerarse como categorización de palabras. Básicamente, el método propuesto se basa en la manipulación de una representación vectorial de palabras denominado Word Embeddings, para resaltar especialmente áquellas que tengan relación jerárquica, proceso que se realiza a partir de textos no estructurados. Tradicionalmente, los Word Embeddings son utilizados para tareas de analogía, es decir, para detectar relaciones de sinonimia, por lo que se considera un poco más complejo utilizar estos vectores para la detección de relaciones jerárquicas (hiperonimia e hiponimia), por consecuencia se proponen métodos adicionales para que, en conjunto con los Word Embeddings, se puedan obtener resultados eficientes al momento de detectar las relaciones entre distintos pares de palabras.Item Generación automática de resúmenes abstractivos mono documento utilizando análisis semántico y del discurso(Pontificia Universidad Católica del Perú, 2017-09-20) Valderrama Vilca, Gregory Cesar; Sobrevilla Cabezudo, Marco AntonioThe web is a giant resource of data and information about security, health, education, and others, matters that have great utility for people, but to get a synthesis or abstract about one or many documents is an expensive labor, which with manual process might be impossible due to the huge amount of data. Abstract generation is a challenging task, due to that involves analysis and comprehension of the written text in non structural natural language dependent of a context and it must describe an events synthesis or knowledge in a simple form, becoming natural for any reader. There are diverse approaches to summarize. These categorized into extractive or abstractive. On abstractive technique, summaries are generated starting from selecting outstanding sentences on source text. Abstractive summaries are created by regenerating the content extracted from source text, through that phrases are reformulated by terms fusion, compression or suppression processes. In this manner, paraphrasing sentences are obtained or even sentences were not in the original text. This summarize type has a major probability to reach coherence and smoothness like one generated by human beings. The present work implements a method that allows to integrate syntactic, semantic (AMR annotator) and discursive (RST) information into a conceptual graph. This will be summarized through the use of a new measure of concept similarity on WordNet.To find the most relevant concepts we use PageRank, considering all discursive information given by the O”Donell method application. With the most important concepts and semantic roles information got from the PropBank, a natural language generation method was implemented with tool SimpleNLG. In this work we can appreciated the results of applying this method to the corpus of Document Understanding Conference 2002 and tested by Rouge metric, widely used in the automatic summarization task. Our method reaches a measure F1 of 24 % in Rouge-1 metric for the mono-document abstract generation task. This shows that using these techniques are workable and even more profitable and recommended configurations and useful tools for this task.