Informática con mención en Ciencias de la Computación

Permanent URI for this collectionhttp://98.81.228.127/handle/20.500.12404/6357

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Diseño de un modelo basado en redes neuronales artificiales para la clasificación de palta hass
    (Pontificia Universidad Católica del Perú, 2020-10-28) Salazar Campos, Juan Orlando; Sipirán Mendoza, Iván Anselmo; Pow Sang Portillo, José Antonio
    Perú se ha convertido en uno de los principales productores de palta Hass, en este aspecto una etapa fundamental es la clasificación, esta situación conllevó al planteamiento del presente trabajo de investigación el cual tuvo por objetivo diseñar un modelo basado en Redes Neuronales Artificiales que permita la clasificación de dicha fruta considerando como criterios el estado de madurez fisiológica y la evaluación de los daños y defectos que presente, dichas consideraciones están contempladas en la Norma Técnica Peruana NTP 011.018-2018. En la etapa inicial se diseñó un entorno controlado con un nivel de luminosidad frío-día, el cual permitió la adquisición de imágenes, construyendo un dataset de 310 imágenes etiquetadas, sobre el cual se aplicó Data Augmentation. Luego se procedió a definir la parametrización de una arquitectura de red neuronal convolucional, obteniendo un modelo de CNN sobre el cual se fueron evaluando 4 criterios, la resolución de las imágenes de entrada, la cantidad de capas de convolución y pooling, el factor de aprendizaje y la cantidad de épocas de entrenamiento. Finalmente se mostraron los resultados obtenidos, definiendo la resolución de la imágenes de entrada en 64 x 64 pixeles, 3 capas de convolución acompañas de pooling, con máscaras de 3x3 y 2x2 respectivamente y con funciones de activación ReLU, pasando luego a una capa capa fully connected, la cual se conectó a una capa oculta y ésta a la capa de salida, la cual constó de 4 neuronas bajo la representación One Hot Encoding, con una función de activación softmax, y un factor de aprendizaje de 0.001, utilizando en su entrenamiento 50 épocas. Luego de evaluar el modelo parametrizado se alcanzó una identificación correcta de las imágenes de palta Hass con una exactitud de 87.5%.