Informática con mención en Ciencias de la Computación

Permanent URI for this collectionhttp://98.81.228.127/handle/20.500.12404/6357

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Minería web de textos en lenguas indígenas para desarrollar tecnologías de lenguaje. Caso de estudio: quechua sureño
    (Pontificia Universidad Católica del Perú, 2022-11-09) Ubaldo Gamarra, Victoria Alejandra; Oncevay Marcos, Felix Arturo
    En la actualidad, para los más de 30 millones de peruanos, la información a la que accedemos se encuentra mayormente en el idioma español. Sin embargo Perú es un país multilingüe, posee una gran riqueza cultural y lingüística con alrededor de 47 lenguas originarias. Para esta población encontrar textos, noticias y contenido en internet en su lengua nativa es una tarea complicada. Existe un limitado acceso a información como lecturas, textos, noticias u otros contenidos que en modalidad digital es muy escaso. Esto se debe a que los pocos ciudadanos que se comunican en lenguas nativas son de manera oral y algunos hacen uso del español sobre sus lenguas nativas. De ese modo, existen investigaciones en el campo de la inteligencia artificial donde a partir del poco material digital recolectado de lenguas nativas se construyeron corpus digitales para tareas de traducción automática y detección del lenguaje. Sin embargo, aún son corpus pequeños para elaborar traductores de calidad, presentan complicaciones en traducir textos completos, y además díficil el aprendizaje con algoritmos complejos, como redes neuronales profundas. Por este motivo se propone realizar una minería web de textos en la lengua originaria quechua sureño para incrementar la cantidad de oraciones y diversidad de dominios, evaluar la calidad de los nuevos textos en un modelo de traducción automática de quechua a español, y desarrollar una web de libre acceso de consulta al corpus creado.
  • Thumbnail Image
    Item
    Representación vectorial de relación de hiponimia e hiperonimia en español
    (Pontificia Universidad Católica del Perú, 2020-09-03) Utia Deza, Jose Vicente; Oncevay Marcos, Felix Arturo
    Actualmente, gracias a Internet y a la Web se dispone de información casi ilimitada, la cual está representada a nivel de textos en su mayoría. Así, dado que acceder a estos textos en su mayoría es de libre acceso, nace el interés por su manipulación de una manera automatizada para poder extraer información que se considere relevante. El presente trabajo de investigación se ubica dentro de la detección automática de relaciones léxicas entre palabras, que son relaciones que se establecen entre los significados de las palabras tal como se consigna en el diccionario. En particular, se centra en la detección de relaciones de hiponimia e hiperonimia, debido a que éstas son relaciones de palabras en las que una de ellas engloba el significado de otra o viceversa, lo cual podría considerarse como categorización de palabras. Básicamente, el método propuesto se basa en la manipulación de una representación vectorial de palabras denominado Word Embeddings, para resaltar especialmente áquellas que tengan relación jerárquica, proceso que se realiza a partir de textos no estructurados. Tradicionalmente, los Word Embeddings son utilizados para tareas de analogía, es decir, para detectar relaciones de sinonimia, por lo que se considera un poco más complejo utilizar estos vectores para la detección de relaciones jerárquicas (hiperonimia e hiponimia), por consecuencia se proponen métodos adicionales para que, en conjunto con los Word Embeddings, se puedan obtener resultados eficientes al momento de detectar las relaciones entre distintos pares de palabras.
  • Thumbnail Image
    Item
    A crowd-powered conversational assistant for the improvement of a neural machine translation system in native peruvian language
    (Pontificia Universidad Católica del Perú, 2019-09-13) Gómez Montoya, Héctor Erasmo; Oncevay Marcos, Felix Arturo
    Para las comunidades más pequeñas y nativas en un país, es muy difícil encontrar información que se encuentre en su idioma original, esto debido a que su lengua no tiene el alcance ni la cantidad suficiente de hablantes, para poder seguir siendo transmitida. A este tipo de lengua se le denomina minoritaria o de pocos recursos. Una de las principales formas en las que el gobierno incentiva el proceso de multilingüismo es proporcionando educación en el idioma nativo a su población, tal es el caso de los hablantes de Shipibo-Konibo que se encuentran dispersos a lo largo de la amazonía del Perú. Ellos cuentan con colegios donde se les imparten clases en su lengua nativa para los niveles de primaria y secundaria. Sin embargo, una necesidad con la que cuentan los pobladores es que la cantidad de material educativo completamente traducido a Shipibo-Konibo es reducida. Esto debido a que el proceso de traducción es muy costoso y poco confiable. El Grupo de investigación en Inteligencia Artificial de la PUCP (IA-PUCP, ex GRPIAA) ha desarrollado una plataforma que utiliza corpus paralelos la creación de un modelo estadístico de traducción automática para las lenguas Shipibo-Konibo y español. Este modelo sufre de ciertas limitantes, entre las cuales tenemos: la cantidad de recursos bibliográficos y material completamente traducido, esto debido a que al ser una lengua minoritaria o de pocos recursos carecen de facilidades para la generación de nuevos corpus. Por otro lado, se desea mejorar el modelo actual en parámetros de eficiencia y obtener mejores resultados en las traducciones. En este contexto nace la pregunta que motiva el presente trabajo: ¿de qué manera podemos incrementar el corpus paralelo de forma eficiente y confiable para la mejora del modelo actual de traducción automática? Por consiguiente, en el presente trabajo se propone desarrollar un agente conversacional que permita la generación de nuevos corpus paralelos entre Shipibo-Konibo y español que permitan mejorar un modelo de traducción automática neuronal en las lenguas ya mencionadas.