Informática con mención en Ciencias de la Computación
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12404/6357
Browse
8 results
Search Results
Item Gestión de riesgos de seguridad de información, bajo el estándar ISO/IEC 27005:2022, aplicando ontologías de dominio(Pontificia Universidad Católica del Perú, 2024-10-07) Santos Llanos, Daniel Elías; Brossard Núñez, Ian Paul; Beltrán Castañón, César ArmandoEl proceso de gestión de riesgos, en el dominio específico de la seguridad de información, es una labor compleja pero necesaria para prevenir eventos adversos que perjudiquen a las organizaciones. Bien por obligaciones regulatorias o porque se requiere propiciar el logro de los objetivos estratégicos, la gestión de riesgos de seguridad de información (GRSI) se ha convertido en un proceso necesario y recurrente. El desarrollo de una GRSI se fundamenta en normas locales e internacionales que establecen protocolos, actividades y criterios, que establecen diversos conceptos que guardan relaciones complejas en sus términos y taxonomías. En consecuencia, se requieren especialistas experimentados para ejecutar este proceso de manera competente. Esto, a su vez, ocasiona que los resultados de este proceso estén intrínsecamente expuestos a la subjetividad e influencia de las personas que lo realizan. En esta tesis se propone e implementa un proceso de gestión de riesgos de seguridad de información, basado en una ontología de dominio, cuyo corpus está basado en los términos establecidos en los estándares ISO de seguridad de información, las normas técnicas peruanas afines y otras regulaciones internacionales relacionadas. Como resultado de la investigación aplicada se ha comprobado que es posible estructurar los conceptos y taxonomías sobre los dominios de gestión de riesgos y seguridad de la información, en una ontología integrada. Esta ha sido implementada, para guiar y automatizar, mediante una solución informática, la ejecución de una GRSI, de manera que se han mitigado la subjetividad y los errores de consistencia en los resultados de este proceso.Item Desarrollo de un algoritmo de Instance Placement en nubes privadas que soporte cargas de Alta Performance(Pontificia Universidad Católica del Perú, 2024-09-04) Córdova Alvarado, Rubén Francisco; Santiváñez Guarniz, César Augusto; Beltrán Castañón, César ArmandoEl aumento de la capacidad computacional ha permitido el uso cada vez mayor de métodos computacionales para resolver problemas complejos de diferentes áreas, logrando tal incremento en la eficiencia y productividad que se dice que hemos empezado una nueva revolución industrial (la era del conocimiento). En esta nueva era, el uso de aplicaciones de alta, High-Performance Computing en inglés (HPC), es cada vez más común. Una forma de utilizar de manera eficiente los recursos computacionales es desplegar estas aplicaciones sobre recursos compartidos (paradigma de computo en la nube, sea esta pública o privada) en lugar de asignarlos a servidores de manera exclusiva, lo que puede resultar en tiempos muertos en el uso de alguno o todos los recursos. El problema de decidir la mejor forma de compartir recursos asignados a servidores ya sea como máquinas virtuales (VMs), contenedores, o en modo dedicado (bare metal) es llamado el problema de Instance Placement, y es fundamental para la performance de una plataforma de computo en la nube. El subproblema que se presenta cuando ya se decidió una asignación via VMs es el de VM Placement. El problema de Instance Placement es actualmente un problema abierto debido a que la solución online requiere el conocimiento no sólo de las demandas actuales y sus parámetros, sino también de las demandas futuras. Como un primer acercamiento a una solución, esta tesis busca diseñar e implementar un algoritmo de Offline Instance Placement donde el conjunto de demandas, su inicio y duración, así como sus estadísticas de uso son conocidas. El algoritmo busca asignar –de la mejor manera posible– los recursos de cómputo a instancias en una nube privada, considerando el tipo de carga a la que estas pertenecen y su nivel de servicio. Debido a que OpenStack es una de las soluciones más empleadas para nubes privadas, se toma como referencia el scheduler de OpenStack para comparar la utilidad de el algoritmo propuesto. Luego de realizar las pruebas, se obtuvo que el scheduler propuesto presenta una mayor utilidad que el scheduler de OpenStack para distintos tipos de cargas.Item Predicción de la aceptación de pedidos por parte de los repartidores en la industria de entregas a domicilio utilizando machine learning(Pontificia Universidad Católica del Perú, 2024-08-14) Alarcon Flores, Jorge Brian; Beltrán Castañón, César ArmandoLa industria de entregas a domicilio ha experimentado un auge significativo debido a la creciente demanda de los consumidores que buscan la comodidad de recibir productos y alimentos directamente en sus hogares. El avance de tecnologías y aplicaciones móviles ha impulsado el crecimiento de este mercado, permitiéndole adaptarse a las preferencias cambiantes de los consumidores [10] [19]. Sin embargo, un componente crítico en este proceso son los repartidores, quienes, tras la realización de un pedido por parte del cliente en la plataforma de la empresa, reciben notificaciones que les ofrecen una serie de pedidos sugeridos. Si aceptan, asumen la responsabilidad de recoger y entregar el pedido a los consumidores, así como la ganancia asociada, pero en ocasiones, los repartidores pueden declinar la aceptación de un pedido, lo que potencialmente conlleva a retrasos en la entrega, generando experiencias insatisfactorias para los usuarios. Este aspecto se presenta como un desafío significativo en la optimización de las operaciones de entrega a domicilio, el cual puede abordarse con soluciones de aprendizaje de máquina. En este artículo se presentan los resultados de la experimentación realizada con diversos modelos de aprendizaje de máquina, aplicándose la técnica de balanceo Smartly OverSampling con SMOTE. Los modelos se aplicaron a un conjunto de datos proporcionado por una institución latinoamericana líder en el sector de entregas a domicilio, reportando el algoritmo LightGBM, los mejores resultados con un AUC de 0.88 y un Average Precision Recall de 0.47.Item Agrupamiento de textos basado en la generación de Embeddings(Pontificia Universidad Católica del Perú, 2022-08-19) Cachay Guivin, Anthony Wainer; Beltrán Castañón, César ArmandoActualmente, gracias a los avances tecnológicos, principalmente en el mundo de la informática se logra disponer de una gran cantidad de información, que en su mayoría son una composición de signos codificados a nivel computacional que forman una unidad de sentido, como son los textos. Debido a la variabilidad y alta volumetría de información navegable en internet hace que poder agrupar información veraz sea una tarea complicada. El avance computacional del lenguaje de procesamiento natural está creciendo cada día para solucionar estos problemas. El presente trabajo de investigación estudia la forma como se agrupan los textos con la generación de Embeddings. En particular, se centra en usar diferentes métodos para aplicar modelos supervisados y no supervisados para que se puedan obtener resultados eficientes al momento de toparse con tareas de agrupamiento automático. Se trabajó con cinco Datasets, y como resultado de la implementación de los modelos supervisados se pudo determinar que el mejor Embedding es FastText implementado con Gensim y aplicado en modelos basados en boosting. Para los modelos no supervisados el mejor Embedding es Glove aplicado en modelos de redes neuronales con AutoEncoder y capa K-means.Item Modelos de detección de emociones en texto y rostros para agentes conversacionales multimodales(Pontificia Universidad Católica del Perú, 2022-04-06) Balbuena Galván, José Guillermo; Beltrán Castañón, César ArmandoEl presente trabajo de investigación aborda la implementación, análisis y selección de distintos modelos de redes neuronales recurrentes (RNN) y convolucionales (CNN) para la detección de emociones en texto y rostros; los cuales pueden ser utilizados como módulos adicionales en agentes conversacionales de tiempo real como son chatbots o robots sociales. Los módulos de detección permiten a los agentes conversacionales poder entender cómo se sienten las personas durante la interacción con ellas; conociendo estos estados los agentes conversacionales pueden responder empáticamente. En primer lugar, se revisará la literatura sobre como los agentes conversacionales buscan ser más empáticos, así como los métodos de detección de emociones mediante distintos canales como texto y rostros. Luego, se procede a recolectar y pre-procesar bases de datos públicas para el entrenamiento de los algoritmos seleccionados en base a la literatura. Finalmente, métricas tanto para la evaluación del rendimiento de predicción multiclase (Accuracy, Precision, Recall y F1), como la velocidad de procesamiento (ej. Framesper- second) son seleccionadas y analizadas para determinar cuáles son los mejores algoritmos para implementar una aplicación de tiempo real.Item Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture(Pontificia Universidad Católica del Perú, 2021-08-11) Melendez Melendez, Roy Kelvin; Beltrán Castañón, César ArmandoHuman infertility is considered a serious disease of the the reproductive system that affects more than 10% of couples worldwide,and more than 30% of reported cases are related to men. The crucial step in evaluating male in fertility is a semen analysis, highly dependent on sperm morphology. However,this analysis is done at the laboratory manually and depends mainly on the doctor’s experience. Besides,it is laborious, and there is also a high degree of interlaboratory variability in the results. This article proposes applying a specialized convolutional neural network architecture (U-Net),which focuses on the segmentation of sperm cells in micrographs to overcome these problems.The results showed high scores for the model segmentation metrics such as precisión (93%), IoU score (86%),and DICE score of 93%. Moreover,we can conclude that U-net architecture turned out to be a good option to carry out the segmentation of sperm cells.Item Application on semantic segmentation with few labels in the detection of water bodies from PERUSAT-1 satellite's images(Pontificia Universidad Católica del Perú, 2020-07-02) Gonzalez Villarreal, Jessenia Margareth Marina; Beltrán Castañón, César ArmandoRemote sensing is widely used to monitor earth surfaces with the main objective of extracting information from it. Such is the case of water surface, which is one of the most affected extensions when flood events occur, and its monitoring helps in the analysis of detecting such affected areas, considering that adequately defining water surfaces is one of the biggest problems that Peruvian authorities are concerned with. In this regard, semi automatic mapping methods improve this monitoring, but this process remains a time-consuming task and into the subjectivity of the experts. In this work, we present a new approach for segmenting water surfaces from satellite images based on the application of convolutional neural networks. First, we explore the application of a U-Net model and then a transfer knowledge-based model. Our results show that both approaches are comparable when trained using an 680-labelled satellite image dataset; however, as the number of training samples is reduced, the performance of the transfer knowledge-based model, which combines high and very high image resolution characteristics, is improvedItem Histograma de orientación de gradientes aplicado al seguimiento múltiple de personas basado en video(Pontificia Universidad Católica del Perú, 2017-03-31) Tolentino Urbina, Álvaro Junior; Beltrán Castañón, César ArmandoEl seguimiento múltiple de personas en escenas reales es un tema muy importante en el campo de Visión Computacional dada sus múltiples aplicaciones en áreas como en los sistemas de vigilancia, robótica, seguridad peatonal, marketing, etc., además de los retos inherentes que representa la identificación de personas en escenas reales como son la complejidad de la escena misma, la concurrencia de personas y la presencia de oclusiones dentro del video debido a dicha concurrencia. Existen diversas técnicas que abordan el problema de la segmentación de imágenes y en particular la identificación de personas, desde diversas perspectivas; por su parte el presente trabajo tiene por finalidad desarrollar una propuesta basada en Histograma de Orientación de Gradientes (HOG) para el seguimiento múltiple de personas basado en video. El procedimiento propuesto se descompone en las siguientes etapas: Procesamiento de Video, este proceso consiste en la captura de los frames que componen la secuencia de video, para este propósito se usa la librería OpenCV de tal manera que se pueda capturar la secuencia desde cualquier fuente; la siguiente etapa es la Clasificación de Candidatos, esta etapa se agrupa el proceso de descripción de nuestro objeto, que para el caso de este trabajo son personas y la selección de los candidatos, para esto se hace uso de la implementación del algoritmo de HOG; por último la etapa final es el Seguimiento y Asociación, mediante el uso del algoritmo de Kalman Filter, permite determinar las asociaciones de las secuencias de objetos previamente detectados. La propuesta se aplicó sobre tres conjuntos de datos, tales son: TownCentre (960x540px), TownCentre (1920x1080px) y PETS 2009, obteniéndose los resultados para precisión: 94.47%, 90.63% y 97.30% respectivamente. Los resultados obtenidos durante las experimentaciones validan la propuesta del modelo haciendo de esta una herramienta que puede encontrar múltiples campos de aplicación, además de ser una propuesta innovadora a nivel nacional dentro del campo de Vision Computacional.